Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Front Microbiol ; 15: 1333793, 2024.
Article in English | MEDLINE | ID: mdl-38993492

ABSTRACT

Cordyceps chanhua is a well-known edible and medicinal mushroom with a long history of use in China, and it contains a variety of secondary metabolites with interesting bioactive ingredients. However, recent researches have mainly focused on cultivation conditions, secondary metabolite compositions and pharmacological activities of C. chanhua, the lack of an efficient and stable genetic transformation system has largely limited further research on the relationship between secondary metabolites and biosynthetic gene clusters in C. chanhua. In this study, single-factor experiments were used to compare the effects of different osmotic stabilizers, enzyme concentrations and enzyme digestion times on protoplast yield, and we found that the highest yield of 5.53 × 108 protoplasts/mL was obtained with 0.7 M mannitol, 6 mg/mL snail enzyme and 4 h of enzyme digestion time, and the regeneration rate of protoplasts was up to approximately 30% using 0.7 M mannitol as an osmotic stabilizer. On this basis, a PEG-mediated genetic transformation system of C. chanhua was successfully established for the first time, which lays the foundation for further genetic transformation of C. chanhua.

2.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731713

ABSTRACT

Ionizing radiation has its unique popularity as a non-thermal decontamination technique treating with protein-rich foodstuffs to ensure the microbial and sensory quality, particularly for shell eggs. However, the changes in the functional properties of egg protein fractions such as liquid egg white (LEW) with macro/microstructural information are still controversial. Hence, this study was designed to elaborate the foaming and heat-set gelation functionality of LEW following different γ-ray irradiation dose treatments (0, 1, 3 or 5 kGy). For such, the physicochemical properties (active sulfhydryl and the hydrophobicity of protein moieties), structural characteristics (through X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry) and interfacial activities (rheological viscosity, interfacial tension, microrheological performance) were investigated. Then, the thermal gelation of LEW in relation to the texture profile and microstructure (by means of a scanning electron microscope) was evaluated followed by the swelling potency analysis of LEW gel in enzyme-free simulated gastric juice. The results indicated that irradiation significantly increased the hydrophobicity of liquid egg white proteins (LEWPs) (p < 0.05) by exposing non-polar groups and the interfacial rearrangement from a ß-sheet to linear and smaller crystal structure, leading to an enhanced foaming capacity. Microstructural analysis revealed that the higher dose irradiation (up to 5 kGy) could promote the proteins' oxidation of LEW alongside protein aggregates formed in the amorphous region, which favored heat-set gelation. As evidenced in microrheology, ≤3 kGy irradiation provided an improved viscoelastic interface film of LEW during gelatinization. Particularly, the LEW gel treated with 1 kGy irradiation had evident swelling resistance during the times of acidification at pH 1.2. These results gave new insight into the irradiation-assisted enhancement of foaming and heat-set gelation properties of LEW.

3.
J Biol Phys ; 48(3): 321-338, 2022 09.
Article in English | MEDLINE | ID: mdl-35879584

ABSTRACT

Photosensitive neurons can capture and convert external optical signals, and then realize the encoding signal. It is confirmed that a variety of firing modes could be induced under optical stimuli. As a result, it is interesting to explore the mode transitions of collective dynamics in the photosensitive neuron network under external stimuli. In this work, the collective dynamics of photosensitive neurons in a small-world network with non-synaptic coupling will be discussed with spatial diversity of noise and uniform noise applied on, respectively. The results prove that a variety of different collective electrical activities could be induced under different conditions. Under spatial diversity of noise applied on, a chimera state could be observed in the evolution, and steady cluster synchronization could be detected in the end; even the nodes in each cluster depend on the degree of each node. Under uniform noise applied on, the complete synchronization window could be observed alternately in the transient process, and steady complete synchronization could be detected finally. The potential mechanism is that continuous energy is pumped in the phototubes, and energy exchange and balance between neurons to form the resonance synchronization in the network with different noise applied on. Furthermore, it is confirmed that the evolution of collective dynamical behaviors in the network depends on the external stimuli on each node. Moreover, the bifurcation analysis for the single neuron model is calculated, and the results confirm that the electrical activities of single neuron are sensitive to different kinds of noise.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology
4.
Ying Yong Sheng Tai Xue Bao ; 17(4): 607-10, 2006 Apr.
Article in Chinese | MEDLINE | ID: mdl-16836087

ABSTRACT

The study on the germination strategy of Eragrostis pilosa under different storage and environmental conditions showed that freshly collected E. pilosa seeds had a stronger innate dormancy. Chilling and dry storage for 4 months had no obvious effect on releasing from dormancy, while longer time storage could facilitate seed maturation. The seeds could germinate either in light or in darkness, and stronger light was in favor of germination. The optimal temperature for germination was 28 degrees C, while higher or lower temperature could result in the decrease of germination. The germination percentage of seeds under changed temperature (16 to 28 degrees C) was higher than that under constant temperature (28 degrees C), but with no significant difference. The critical amount of rain for seed germination was about 10 mm, and the germination percentage and duration all increased with increasing rainfall. E. pilosa had two germination strategies, i. e., quick germination and dormancy for more than one year. Based on the seed morphological characters and germination strategies, it could be concluded that E. pilosa had a persistent soil seed bank.


Subject(s)
Adaptation, Physiological , Ecosystem , Eragrostis/growth & development , Germination , Desert Climate
SELECTION OF CITATIONS
SEARCH DETAIL