Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38684027

ABSTRACT

Capillary force driven self-assembly micropillars (CFSA-MP) holds immense promise for the manipulation and capture of cells/tiny objects, which has great demands of wide size range and high robustness. Here, we propose a novel method to fabricate size-adjustable and highly robust CFSA-MP that can achieve wide size range and high stability to capture microspheres. First, we fabricate a microholes template with an adjustable aspect ratio using the spatial-temporal shaping femtosecond laser double-pulse Bessel beam-assisted chemical etching technique, and then the micropillars with adjustable aspect ratio are demolded by polydimethylsiloxane (PDMS). We fully demonstrated the advantages of the Bessel optical field by using the spatial-temporal shaping femtosecond laser double-pulse Bessel beams to broaden the height range of the micropillars, which in turn expands the size range of the captured microspheres, and finally achieving a wide range of capturing microspheres with a diameter of 5-410 µm. Based on the inverted mold technology, the PDMS micropillars have ultrahigh mechanical robustness, which greatly improves the durability. CFSA-MP has the ability to capture tiny objects with wide range and high stability, which indicates great potential applications in the fields of chemistry, biomedicine, and microfluidics.

2.
ACS Appl Mater Interfaces ; 15(34): 41092-41100, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37599436

ABSTRACT

In extreme environments, fog formation on a microlens array (MLA) surface results in a device failure. One reliable solution for fog removal is to heat the surface using a microheater. However, due to the surface interference, the combination of these two microdevices remains elusive. In this study, we introduce lift-off and electroless plating into femtosecond laser processing to fabricate a microheater integrated MLA (µH-MLA) on the same substrate with high light transmittance, durability, and fog removal efficiency. Laser-induced micro-nano grooves enable the microheater to be tightly coupled with the MLA and have high heating performance, thus maintaining a stable performance for over 24 h during continuous operation as well as under long time ultrasonic vibration and mechanical friction. With a rapid response time (τ0.5) of 17 s and a high working temperature of 188 °C, the µH-MLA removed fog that covers the entire face within 14 s. Finally, we prove the use of this fabrication method in large areas and curved surface environments. This study provides a flexible, stable, and economical method to integrate micro-optical and microelectrical devices.

3.
ACS Appl Mater Interfaces ; 12(31): 35493-35501, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32659071

ABSTRACT

Steam generation through efficient utilization of solar energy is a promising technology in addressing the challenge of global freshwater shortage and water pollution. One of the biggest hurdles for traditional photothermal membranes to function continuously in a high temperature, high salt, and corrosive environment has been attributed to their rapid decline of mechanical properties. In this work, a highly efficient solar-driven interfacial water evaporation system has been developed via a polydopamine/carbon/silicon (PCS) composite membrane supported by a floating insulation foam substrate. A 3.1 fold increase in the water vaporization rate was recorded compared with the pure water system. The 2D-carbon nanolayer on the surface was successfully prepared by carbonizing low-cost linear polyethylene with a glass fiber (GF) membrane as the substrate, and then the carbon membrane was modified with dopamine to control water transport on the carbon coating and within the glass fiber. The PCS membrane has a high efficiency for solar steam generation owing to high optical absorption and has excellent solar thermal conversion capability. The evaporation rate and solar thermal conversion efficiency of the PCS membrane under simulated sunlight irradiation with 1 sun (1 kW·m-2) are 1.39 kg·m-2·h-1 and 80.4% respectively, which are significantly higher compared to GF membrane, carbon/silicon (CS) membrane, and pure water without a photothermal membrane. The water evaporation system retained high efficiency after 20 cycles under simulated sunlight irradiation of 1 sun. This study provides critical insight on the design and fabrication of a highly efficient and durable evaporation system.

SELECTION OF CITATIONS
SEARCH DETAIL
...