Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 39: 521-543, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38883317

ABSTRACT

Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.

2.
Front Med (Lausanne) ; 11: 1289777, 2024.
Article in English | MEDLINE | ID: mdl-38420363

ABSTRACT

Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.

3.
J Ethnopharmacol ; 324: 117772, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38266947

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhuangjin Decoction (BZD) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY: This study aimed to verify the mechanism of Bushen Zhuangjin Decoction in relieving the pain of knee osteoarthritis. MATERIALS AND METHODS: Network pharmacology evaluation was used to discover the potential targets of BZD to relieve pain in KOA. The therapeutic effects of BZD treatment on KOA pain using histomorphology, behavioral assessments, suspension chip analysis, and ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) assays. The functional magnetic resonance imaging was used to explore the effects of BZD treatment on brain function associated to KOA. RESULTS: Network pharmacological analysis revealed the association between the analgesic effect of BZD on KOA and the pain signaling neurotransmitter 5-HT. Subsequently, we conducted experiments to verify the therapeutic effect of BZD on pain in KOA animal models. Behavioral tests demonstrated that the pain threshold of knee osteoarthritis rats decreased in PWT and PWL, but BZD was able to increase the pain threshold. Histopathological staining indicated thinning of the cartilage layer and sparse trabeculae in the subchondral bone. Suspension chip analysis revealed a significant increase in pro-inflammatory factors of IL-1α, IL-5, IL-12, IL-17A, RANTES, TNF-α and M-CSF in KOA, along with a significant decrease in anti-inflammatory factor of IL-13. However, BZD treatment decreased the expression of pro-inflammatory factors and increased the content of anti-inflammatory factor. UHPLC-MS/MS analysis showed a significant decrease in the serum levels of GABA, E, GSH, Kyn, Met, and VMA in KOA, which were significantly increased by BZD. Conversely, the serum levels of TrpA, TyrA, Spd, and BALa were significantly increased in KOA and significantly decreased by BZD. ELISA and Western blot analysis showed increased expression of subchondral bone pain-related neuropeptides SP, CGRP, TH, NPY, VEGFA, 5-HT3 in KOA, which were decreased in BZD. Functional magnetic resonance imaging demonstrated that BZD exerts its therapeutic effect on KOA by modulating the activity and functional connections of the cortex, hypothalamus, and hippocampus. CONCLUSIONS: This study confirmed the significant role of pain-related neuromodulation mechanisms in the analgesic therapy of BZD and provides a theoretical foundation for using BZD as a traditional Chinese medical treatment for KOA pain.


Subject(s)
Drugs, Chinese Herbal , Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Tandem Mass Spectrometry , Pain/drug therapy , Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use
4.
Heliyon ; 9(9): e19322, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674829

ABSTRACT

Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.

5.
J Transl Med ; 21(1): 543, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580725

ABSTRACT

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Subject(s)
Magnetic Resonance Imaging , Ventral Tegmental Area , Rats , Animals , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/physiology , Magnetic Resonance Imaging/methods , Brain , Dopaminergic Neurons/physiology
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122654, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37019002

ABSTRACT

Knee osteoarthritis (KOA), a progressive joint disease, is a leading source of chronic pain and disability, and its diagnosis mainly depends on medical imaging findings and clinical symptoms. This study aimed to explore an auxiliary diagnostic technology and clinical efficacy evaluation in KOA based on surface-enhanced Raman scattering (SERS). Three sequential experiments were performed: 1) preliminary observation of the therapeutic effects of icariin (ICA); 2) using serum SERS spectra obtained from rat models belonging to sham group, KOA group and icariin treatment group, respectively, to analyze the KOA-related expression profiles; 3) employing partial least squares (PLS) and support vector machines (SVM) algorithms to establish KOA diagnosis model. Pathological changes verified the efficacy of icariin in KOA. Raman peak assignment combined with spectral difference analysis reflected the biochemical changes associated with KOA, including amino acid, carbohydrates and collagen. ICA intervention significantly reversed these changes, although full recovery could not be achieved. Based on PLS-SVM approach, the sensitivity, specificity and accuracy of 100%, 98.33% and 98.89%, respectively, were obtained for screening KOA. This work proves that SERS has great potential to be used as an auxiliary diagnostic technology for KOA, and is also helpful for the exploration of novel KOA treatment agent.


Subject(s)
Osteoarthritis, Knee , Spectrum Analysis, Raman , Animals , Rats , Spectrum Analysis, Raman/methods , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/drug therapy , Treatment Outcome , Support Vector Machine
7.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36675895

ABSTRACT

Trichoderma reesei is a powerful fungal cell factory for the production of cellulolytic enzymes due to its outstanding protein secretion capacity. Endoplasmic reticulum-associated degradation (ERAD) plays an integral role in protein secretion that responds to secretion pressure and removes misfolded proteins. However, the role of ERAD in fungal growth and endogenous protein secretion, particularly cellulase secretion, remains poorly understood in T. reesei. Here, we investigated the ability of T. reesei to grow under different stresses and to secrete cellulases by disrupting three major genes (hrd1, hrd3 and der1) involved in the critical parts of the ERAD pathway. Under the ER stress induced by high concentrations of DTT, knockout of hrd1, hrd3 and der1 resulted in severely impaired growth, and the mutants Δhrd1 and Δhrd3 exhibited high sensitivity to the cell wall-disturbing agents, CFW and CR. In addition, the absence of either hrd3 or der1 led to the decreased heat tolerance of this fungus. These mutants showed significant differences in the secretion of cellulases compared to the parental strain QM9414. During fermentation, the secretion of endoglucanase in the mutants was essentially consistent with that of the parental strain, while cellobiohydrolase and ß-glucosidase were declined. It was further discovered that the transcription levels of the endoglucanase-encoding genes (eg1 and eg2) and the cellobiohydrolase-encoding gene (cbh1) were not remarkedly changed. However, the ß-glucosidase-encoding gene (bgl1) was significantly downregulated in the ERAD-deficient mutants, which was presumably due to the activation of a proposed feedback mechanism, repression under secretion stress (RESS). Taken together, our results indicate that a defective ERAD pathway negatively affects fungal growth and cellulase secretion, which provides a novel insight into the cellulase secretion mechanism in T. reesei.

8.
Int Orthop ; 47(1): 151-164, 2023 01.
Article in English | MEDLINE | ID: mdl-36156178

ABSTRACT

PURPOSE: To compare the clinical, radiological, and second-look arthroscopic outcomes in patients who underwent anterior cruciate ligament (ACL) reconstruction using a four-strand hamstring tendon graft (hamstring group) either without augmentation or with ligament augmentation and reconstruction system (LARS) augmentation (LARS augmentation group). METHODS: From January 2018 to December 2019, patients who underwent ACL reconstruction were included. Patient-reported outcome measures (PROMs) were undertaken pre-operatively and at three, six, 12, and 24 months post-operatively. Arthroscopic evaluation was performed focusing on the morphology of the graft based on graft tension, graft tear, and synovial coverage. RESULTS: A total of 178 consecutive patients received single-bundle ACL reconstruction, 89 patients in each group, and 20 patients were lost to follow-up in the first two years. At the three month follow-up, the LARS augmentation group had significantly higher Lysholm scores, IKDC scores, and KOS-ADLS scores than the hamstring group (P < 0.001). At the three, six and 12-month follow-ups, there were significantly higher Tegner scores and ACL-RSI scores in the LARS augmentation group than in the hamstring group (P < 0.05). At the three and six month follow-ups, the LARS augmentation group had significantly higher rates of return to sports and return to sports at their preinjury level (P < 0.05). There were no between-group differences in other outcomes, including arthroscopic outcomes, graft signal intensity, post-operative complications or rerupture rates. CONCLUSIONS: Autologous hamstring augmented with the LARS augmentation technique provides good and realistic clinical and functional results during the early post-operative period with high levels of satisfaction of patients, including participation in sports and physical activity, and high rates of return to sports at the preinjury level, without any apparent complications compared with hamstring ACL reconstruction alone. No increases in complication, reinjury rates, or increased lateral laxity were observed at the 12-month or 24-month follow-up.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Tendons , Humans , Hamstring Tendons/transplantation , Treatment Outcome , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/adverse effects , Anterior Cruciate Ligament Reconstruction/methods , Ligaments/surgery , Follow-Up Studies
9.
Opt Express ; 30(10): 16585-16605, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221498

ABSTRACT

Most of the existing deep learning methods for hyperspectral image (HSI) classification use pixel-wise or patch-wise classification. In this paper, we propose an image-wise classification method, where the network input is the original hyperspectral cube rather than the spectral curve of each pixel (i.e., pixel-wise) or neighbor region of each pixel (i.e., patch-wise). Specifically, we propose a minimalistic fully convolution network (MFCN) and a semi-supervised loss function, which can perform pixel-level classification for HSI with few labeled samples. The comparison experiments demonstrated the progress of our methods, using three new benchmark HSI datasets (WHU-Hi-LongKou, WHU-Hi-HanChuan and WHU-Hi-HongHu) with wavelength range from 400 to 1000nm. In the comparison experiments, we randomly selected 25 labeled pixels from each class for training, equivalent to only 0.11%, 0.16%, and 0.14% of all labeled pixels for the three datasets, respectively. In addition, through ablation studies and theoretical analysis, we verified and analyzed the effectiveness and superiority of our design choices.

10.
Front Endocrinol (Lausanne) ; 13: 876067, 2022.
Article in English | MEDLINE | ID: mdl-36034452

ABSTRACT

Bone immunity regulates osteoclast differentiation and bone resorption and is a potential target for the treatment of postmenopausal osteoporosis (PMOP). The molecular network between bone metabolism and the immune system is complex. However, the molecular mechanism underlying the involvement of the major histocompatibility complex class II (MHC-II) molecule protein presentation pathway in PMOP remains to be elucidated. The MHC-II molecule is a core molecule of the protein presentation pathway. It is combined with the processed short peptide and presented to T lymphocytes, thereby activating them to become effector T cells. T-cell-derived inflammatory factors promote bone remodeling in PMOP. Moreover, the MHC-II molecule is highly expressed in osteoclast precursors. MHC-II transactivator (CIITA) is the main regulator of MHC-II gene expression and the switch for protein presentation. CIITA is also a major regulator of osteoclast differentiation and bone homeostasis. Therefore, we hypothesized that the MHC-II promotes osteoclast differentiation, providing a novel pathogenic mechanism and a potential target for the treatment of PMOP.


Subject(s)
Osteoporosis, Postmenopausal , Female , Histocompatibility Antigens Class II , Humans , Major Histocompatibility Complex , Osteoclasts , T-Lymphocytes
11.
Front Endocrinol (Lausanne) ; 13: 876269, 2022.
Article in English | MEDLINE | ID: mdl-35757427

ABSTRACT

Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption and bone formation induced by estrogen deficiency, which is a complex outcome related to estrogen and the immune system. The interaction between bone and immune cells is regarded as the context of PMOP. Macrophages act differently on bone cells, depending on their polarization profile and secreted paracrine factors, which may have implications for the development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer's disease (AD) might have pathophysiological links, and the similarity of their pathological mechanisms is partially visible in altered macrophages and cytokines in the immune system. This review focuses on exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are reviewed. Then, based on the thought of "different tissue-same cell type-common pathological molecules-disease pathological links-drug targets" and the methodologies of "molecular network" in bioinformatics, highlight that multiple cytokines overlap in the pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the treatment of PMOP.


Subject(s)
Alzheimer Disease , Arthritis, Rheumatoid , Osteoporosis, Postmenopausal , Alzheimer Disease/etiology , Cytokines , Estrogens , Female , Humans , Macrophages/pathology , Osteoporosis, Postmenopausal/etiology
12.
Anal Methods ; 14(22): 2212-2218, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35612542

ABSTRACT

The Huo-Xue-Hua-Yu decoction (HXHYD) prescription, which possesses good clinical properties for healing fractures, is made up of 12 types of traditional Chinese medicines (TCMs). According to the drug efficacy of TCM, HXHYD consists of four drug-group prescriptions. This study focused on the type of active mechanism in these drug groups and the type of interaction between them in HXHYD. Surface-enhanced Raman scattering (SERS) spectroscopy was employed to study the effect of the incorporation of calcium hydroxyapatite (CHA), protein and lipid groups on the repair of complete tibial fractures in rats treated with HXHYD and its drug-group prescriptions and without treatment to reveal the efficacy rule of the drug groups in the prescription. The rats were divided into seven groups, each of which was subdivided into three subgroups (evaluated on days 15, 21 and 30 after surgery). The six treatment groups were treated HXHYD, four drug-group prescriptions and Gu-Zhe-Cuo-Shang capsule therapy (treated control). SERS readings were taken at the fractured sites. The results showed that the medical ingredients in HXHYD were not the simple addition of four drug-group prescriptions and the efficacy of HXHYD was stronger than every other drug group prescription because it contained the highest content of CHA and highest carbonate-to-phosphate and phosphate-to-phenylalanine ratios among the treatment groups at all time points in comparison with the fractured control group (no treatment). Thus, the SERS technique has great potential to provide a novel method for effectively and accurately studying the efficacy rule of drug groups in one prescription with the aim to optimize prescriptions.


Subject(s)
Metal Nanoparticles , Tibial Fractures , Animals , Durapatite/pharmacology , Fracture Healing , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Rats , Spectrum Analysis, Raman
13.
Mol Psychiatry ; 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484244

ABSTRACT

Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.

14.
Front Endocrinol (Lausanne) ; 13: 874849, 2022.
Article in English | MEDLINE | ID: mdl-35399950

ABSTRACT

Postmenopausal osteoporosis (PMOP) is an estrogen deficiency-induced bone loss, which has been shown an association with an altered gut microbiota (GM). Gut microbiota-bone axis has been recognized as a crucial mediator for bone homeostasis. Icariin (ICA) is an effective agent to delay bone loss by regulating the bone homeostasis. Thus, we hypothesize that ICA can prevent bone loss by modulating GM and regulating metabolite alterations. The effects of ICA on bone metabolism improvement in ovariectomized (OVX) rats and their relationships with the GM and fecal metabolites were investigated. Micro-computed tomography (micro-CT) and hematoxylin-eosin (HE) staining showed a typical bone boss in OVX group, while ICA or estradiol (E2) administration exhibited positive effects on bone micro-architecture improvement. The GM such as Actinobacteria, Gammaproteobacteria, Erysipelotrichi, Erysipelotrichales, Enterobacteriales, Actinomycetales, Ruminococcus and Oscillospira significantly correlated to serum bone Gla-protein (BGP), receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG) and tartrate resistant acid phosphatase (TRACP). Further t-test revealed a substantial variation of the GM and fecal metabolites in different treatments. Among them, Lachnoclostridium, Butyricimonas, Rikenella, Paraprevolla, Adlercreutzia, Enterorhabdus, Anaerovorax, Allobaculum, Elusimicrobium, Lactococcus, Globicatella and Lactobacillus were probably the key microbial communities driving the change of bile acid, amino acid and fatty acid, thereby leading to an improvement of PMOP. The significant up-regulation of L-Saccharopine, 1-Aminocyclohexadieneacid and linoleic acid after ICA administration suggested important contributions of amino acid and fatty acid metabolisms in the prevention and treatment of PMOP. Taken together, our study has provided new perspectives to better understand the effects of ICA on PMOP improvement by regulating GM and the associated fecal metabolites. Our findings contribute to develop ICA as a potential therapy for PMOP.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis, Postmenopausal , Animals , Bone Density , Fatty Acids , Female , Flavonoids , Humans , Osteoporosis, Postmenopausal/prevention & control , Rats , X-Ray Microtomography
15.
Microb Cell Fact ; 21(1): 5, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983541

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. RESULTS: In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5' truncated promoters in different lengths were established based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3 (- 640 to - 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (- 821 to - 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger ß-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. CONCLUSIONS: The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.


Subject(s)
Cellulase/genetics , Cellulase/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Promoter Regions, Genetic , Zea mays/metabolism , Biomass , Cellulose/metabolism , Fungal Proteins/genetics , Zea mays/microbiology
16.
Brain Sci ; 11(11)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34827473

ABSTRACT

Alcohol addiction is regarded as a series of dynamic changes to neural circuitries. A comparison of the global network during different stages of alcohol addiction could provide an efficient way to understand the neurobiological basis of addiction. Two animal models (P-rats screened from an alcohol preference family, and NP-rats screened from an alcohol non-preference family) were trained for alcohol preference with a two-bottle free choice method for 4 weeks. To examine the changes in the neural response to alcohol during the development of alcohol preference and acute stimulation, different trials were studied with resting-state fMRI methods during different periods of alcohol preference. The correlation coefficients of 28 regions in the whole brain were calculated, and the results were compared for alcohol preference related to the genetic background/training association. The variety of coherence patterns was highly related to the state and development of alcohol preference. We observed significant special brain connectivity changes during alcohol preference in P-rats. The comparison between the P- and NP-rats highlighted the role of genetic background in alcohol preference. The results of this study support the alterations of the neural network connection during the formation of alcohol preference and confirm that alcohol preference is highly related to the genetic background. This study could provide an effective approach for understanding the neurobiological basis of alcohol addiction.

17.
Enzyme Microb Technol ; 152: 109923, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34688089

ABSTRACT

The filamentous fungus Trichoderma reesei is an extraordinarily efficient cell factory of industrial cellulase for production of biofuels and other bio-based products because of its excellent potential to secrete cellulolytic enzymes. Engineering the protein secretory pathway may be a powerful means for efficient protein production. However, it is uncertain whether this engineering approach could improve cellulase production in T. reesei. Herein, the endoplasmic reticulum (ER) secretory pathway was engineered for the production of cellulolytic enzymes by multiple strategies, including: (I) overexpression of the key components of protein folding (Pdi1, Ero1 and BiP); (II) overexpression of the glycosylation-related elements (Gpt1 and Gls2); (III) knockout of the ER mannosidase I (Mns1) encoding gene mns1. By utilizing these ER engineering strategies, the secretion of ß-glucosidase was remarkably elevated in the engineered strains, ranging from 29.2 % to 112.5 %. Furthermore, it was found that engineering these components also regulated the ER stress resistance. More importantly, the total cellulase production was increased with varying degrees, which reached a maximum of 149.4 %, using the filter paper assay (FPA) as a characterization method. These results demonstrated that engineering the ER secretory pathway can enhance protein secretion, particularly for cellulase production, which shed light for the development of high-efficient cellulolytic enzymes for economically feasible bioethanol production from lignocellulosic biomass.


Subject(s)
Cellulase , Endoplasmic Reticulum , Trichoderma , Cellulase/biosynthesis , Endoplasmic Reticulum/metabolism , Hypocreales , Microorganisms, Genetically-Modified , Secretory Pathway , Trichoderma/genetics , Trichoderma/metabolism
18.
Biomed Pharmacother ; 144: 112259, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607107

ABSTRACT

Knee osteoarthritis (KOA) is a common disease with no specific treatment. Icariin (ICA) is considered an agent for KOA. This study aimed to confirm the pain-related neuromodulation mechanisms of ICA on KOA. Three experiments were designed: (1) verifying the therapeutic effects of ICA in vivo and in vitro, (2) exploring the potential pain-related neuromodulation pathways involved in ICA treatment by functional magnetic resonance imaging (fMRI) and virus retrograde tracing (VRT) and (3) confirming the pain-related targets by tandem mass tag (TMT)-based quantitative proteomics and bioinformatic analyses. Experiment 1 verified the efficacy of ICA in OA animal and cell models. Experiment 2 found a series of brain regions associated with KOA reversed by ICA treatment, indicating that a pain-related hypothalamic-mediated neuromodulation pathway and an endocannabinoid (EC)-related pathway contribute to ICA mechanisms. Experiment 3 explored and confirmed four pain-related genes involved in KOA and ICA treatment. We confirmed the key role of pain-related neuromodulation mechanisms in ICA treatment associated with its analgesic effect. Our findings contribute to considering ICA as a novel therapy for KOA.


Subject(s)
Analgesics/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Brain/drug effects , Chondrocytes/drug effects , Flavonoids/pharmacology , Joints/drug effects , Osteoarthritis, Knee/drug therapy , Pain Threshold/drug effects , Animals , Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/metabolism , Arthritis, Experimental/physiopathology , Behavior, Animal/drug effects , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Cells, Cultured , Chondrocytes/metabolism , Gene Expression Regulation , Inflammation Mediators/metabolism , Joints/innervation , Joints/metabolism , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Neuroanatomical Tract-Tracing Techniques , Neuropeptides/genetics , Neuropeptides/metabolism , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/physiopathology , Proteomics , Rats, Sprague-Dawley , Signal Transduction , Tandem Mass Spectrometry
19.
Front Pharmacol ; 12: 637273, 2021.
Article in English | MEDLINE | ID: mdl-33912052

ABSTRACT

This study aimed to identify whether the NF-κB signaling pathway plays a key role in the treatment of osteoarthritis (OA) with Bushen Zhuangjin Decoction (BZD) based on a typical network pharmacology approach (NPA). Four sequential experiments were performed: 1) conventional high-performance liquid chromatography (HPLC), 2) preliminary observation of the therapeutic effects of BZD, 3) NPA using three OA-related gene expression profiles, and 4) verification of the key pathway identified by NPA. Only one HPLC-verified compound (paeoniflorin) was identified from the candidate compounds discovered by NPA. The genes verified in the preliminary observation were also identified by NPA. NPA identified a key role for the NF-κB signaling pathway in the treatment of OA with BZD, which was confirmed by conventional western blot analysis. This study identified and verified NF-κB signaling pathway as the most important inflammatory signaling pathway involved in the mechanisms of BZD for treating OA by comparing the NPA results with conventional methods. Our findings also indicate that NPA is a powerful tool for exploring the molecular targets of complex herbal formulations, such as BZD.

20.
J Pharm Biomed Anal ; 198: 114027, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33744465

ABSTRACT

Metabolomics is widely used as a powerful technique for identifying metabolic patterns and functions of organs and biological systems. Normally, there are multiple groups/targets involved in data processed by discriminant analysis. This is more common in cerebral studies, as there are always several brain regions involved in neuronal studies or brain metabolic dysfunctions. Furthermore, neuronal activity is highly correlated with cerebral energy metabolism, such as oxidation of glucose, especially for glutamatergic (excitatory) and GABAergic (inhibitory) neuronal activities. Thus, regional cerebral energy metabolism recognition is essential for understanding brain functions. In the current study, ten different brain regions were considered for discrimination analysis. The metabolic kinetics were investigated with 13C enrichments in metabolic products of glucose and measured using the nuclear magnetic spectroscopic method. Multiple discriminative methods were used to construct classification models in order to screen out the best method. After comparing all the applied discriminatory analysis methods, the boost-decision tree method was found to be the best method for classification and every cerebral region exhibited its own metabolic pattern. Finally, the differences in metabolic kinetics among these brain regions were analyzed. We, therefore, concluded that the current technology could also be utilized in other multi-class metabolomics studies and special metabolic kinetic patterns could provide useful information for brain function studies.


Subject(s)
Brain , Metabolomics , Energy Metabolism , Glucose , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL