Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Hazard Mater ; 474: 134823, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852254

ABSTRACT

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.


Subject(s)
Cardiotoxicity , Polystyrenes , Protein Serine-Threonine Kinases , Smad3 Protein , Transforming Growth Factor beta1 , Tumor Suppressor Protein p53 , Up-Regulation , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Cardiotoxicity/etiology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Polystyrenes/toxicity , Up-Regulation/drug effects , Male , Signal Transduction/drug effects , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Mice, Inbred C57BL , Nanoparticles/toxicity , Myocardium/metabolism , Myocardium/pathology
2.
Ecotoxicol Environ Saf ; 279: 116457, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754198

ABSTRACT

Methamphetamine (METH) is a psychostimulant drug belonging to the amphetamine-type stimulant class, known to exert male reproductive toxicity. Recent studies suggest that METH can disrupt the gut microbiota. Furthermore, the gut-testis axis concept has gained attention due to the potential link between gut microbiome dysfunction and reproductive health. Nonetheless, the role of the gut microbiota in mediating the impact of METH on male reproductive toxicity remains unclear. In this study, we employed a mouse model exposed to escalating doses of METH to assess sperm quality, testicular pathology, and reproductive hormone levels. The fecal microbiota transplantation method was employed to investigate the effect of gut microbiota on male reproductive toxicity. Transcriptomic, metabolomic, and microbiological analyses were conducted to explore the damage mechanism to the male reproductive system caused by METH. We found that METH exposure led to hormonal disorders, decreased sperm quality, and changes in the gut microbiota and testicular metabolome in mice. Testicular RNA sequencing revealed enrichment of several Gene Ontology terms associated with reproductive processes, as well as PI3K-Akt signaling pathways. FMT conveyed similar reproductive damage from METH-treated mice to healthy recipient mice. The aforementioned findings suggest that the gut microbiota plays a substantial role in facilitating the reproductive toxicity caused by METH, thereby highlighting a prospective avenue for therapeutic intervention in the context of METH-induced infertility.


Subject(s)
Gastrointestinal Microbiome , Methamphetamine , Reproduction , Testis , Animals , Methamphetamine/toxicity , Male , Gastrointestinal Microbiome/drug effects , Mice , Testis/drug effects , Testis/pathology , Reproduction/drug effects , Spermatozoa/drug effects , Mice, Inbred C57BL , Central Nervous System Stimulants/toxicity , Fecal Microbiota Transplantation
3.
Environ Pollut ; 346: 123659, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417603

ABSTRACT

Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.


Subject(s)
Biphenyl Compounds , Gastrointestinal Microbiome , Phosphates , Pregnancy , Female , Humans , Phosphates/pharmacology , NF-kappa B , Lipopolysaccharides , Inulin/pharmacology , Toll-Like Receptor 4/metabolism , Inflammation
4.
Ecotoxicol Environ Saf ; 269: 115769, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38039856

ABSTRACT

Prenatal exposure to methamphetamine (METH) is an issue of global concern due to its adverse effects on offspring, particularly its impact on liver health, an area still not fully understood. Inulin, a recognized prebiotic, is thought to potentially ameliorate these developmental disorders and toxic injuries in progeny. To investigate the effects of prenatal METH exposure on the liver and the role of gut microbiota, we established a murine model, the subjects of which were exposed to METH prenatally and subsequently treated with inulin. Our findings indicate that prenatal METH exposure causes liver damage in offspring, as evidenced by a decreased liver index, histopathological changes, diminished glycogen synthesis, hepatic dysfunction, and alterations in mRNA profiles. Furthermore, it impairs the antioxidant system and induces oxidative stress, possibly due to changes in cecal microbiota and dysregulation of bile acid homeostasis. However, maternal inulin supplementation appears to restore the gut microbiota in offspring and mitigate the hepatotoxic effects induced by prenatal METH exposure. Our study provides definitive evidence of METH's transgenerational hepatotoxicity and suggests that maternal inulin supplementation could be an effective preventive strategy.


Subject(s)
Chemical and Drug Induced Liver Injury , Gastrointestinal Microbiome , Methamphetamine , Prenatal Exposure Delayed Effects , Pregnancy , Female , Mice , Animals , Humans , Methamphetamine/toxicity , Inulin/pharmacology , Dietary Supplements , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control
5.
Biomedicines ; 11(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893138

ABSTRACT

Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS.

6.
Heliyon ; 9(8): e19318, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664705

ABSTRACT

Background: Solid pseudopapillary neoplasms (SPNs) are uncommon tumors of low malignancy with a generally favorable prognosis, mostly originating from the pancreas. To date, 12 cases of SPNs with a primary ovarian origin (SPN-Os) have been reported globally, and their detailed characteristics have not been fully elucidated. Case description: We reported the 13th SPN-O case, which occurred in a 52-year-old woman with an 18.5 cm left ovarian mass. Four imaging methods, including ultrasound, computed tomography, magnetic resonance imaging and positron emission tomography, were utilized before surgery. An elevated level of serum cancer antigen 125 was detected and a total hysterectomy plus bilateral salpingo-oophorectomy was performed. Microscopic examination revealed a typical solid pseudopapillary structure. The tumor cells were stained focally for pan-cytokeratin, synaptophysin, CD99 and CD10, while ß-catenin, vimentin and CD56 were diffusely expressed. The Ki-67 proliferation index was 3%, and immunohistochemical (IHC) staining for chromogranin-A, inhibin-a, and E-cadherin was negative. No evidence of recurrence or metastasis was observed by clinical and imaging data during a 5-month postoperative follow-up. Conclusion: This is a report of an unusual case of a primary ovarian SPN with an up-to-date review of SPN-Os. A minimum combination of imaging methods and IHC stains was proposed for SPN-Os, which may prove beneficial in clinical practice.

7.
Front Microbiol ; 14: 1255971, 2023.
Article in English | MEDLINE | ID: mdl-37720144

ABSTRACT

Introduction: Heart failure (HF) is usually the end stage of the continuum of various cardiovascular diseases. However, the mechanism underlying the progression and development of HF remains poorly understood. The sigma-1 receptor (Sigmar1) is a non-opioid transmembrane receptor implicated in many diseases, including HF. However, the role of Sigmar1 in HF has not been fully elucidated. Methods: In this study, we used isoproterenol (ISO) to induce HF in wild-type (WT) and Sigmar1 knockout (Sigmar1-/-) mice. Multi-omic analysis, including microbiomics, metabolomics and transcriptomics, was employed to comprehensively evaluate the role of Sigmar1 in HF. Results: Compared with the WT-ISO group, Sigmar1-/- aggravated ISO-induced HF, including left ventricular systolic dysfunction and ventricular remodeling. Moreover, Sigmar1-/- exacerbated ISO-induced gut microbiota dysbiosis, which was demonstrated by the lower abundance of probiotics g_Akkermansia and g_norank_f_Muribaculaceae, and higher abundance of pathogenic g_norank_f_Oscillospiraceae and Allobaculum. Furthermore, differential metabolites among WT-Control, WT-ISO and Sigmar-/--ISO groups were mainly enriched in bile secretion, tryptophan metabolism and phenylalanine metabolism, which presented a close association with microbial dysbiosis. Corresponding with the exacerbation of the microbiome, the inflammation-related NOD-like receptor signaling pathway, NF-kappa B signaling pathway and TNF signaling pathway were activated in the heart tissues. Conclusion: Taken together, this study provides evidence that a Sigmar1 knockout disturbs the gut microbiota and remodels the serum metabolome, which may exacerbate HF by stimulating heart inflammation.

8.
Ecotoxicol Environ Saf ; 264: 115396, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37625336

ABSTRACT

Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 µg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1ß, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.


Subject(s)
Flame Retardants , Phosphates , Pregnancy , Mice , Humans , Female , Animals , Organophosphates/toxicity , Inulin , Neuroinflammatory Diseases , Oxidative Stress , Flame Retardants/toxicity
9.
Sci Total Environ ; 892: 164619, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37269995

ABSTRACT

Polystyrene microplastics (PS-MPs) have emerged as a concerning pollutant in modern society due to their widespread production and usage. Despite ongoing research efforts, the impact of PS-MPs on mammalian behavior and the mechanisms driving these effects remain incompletely elucidated. Consequently, effective strategies for prevention have yet to be developed. To fill these gaps, C57BL/6 mice were orally administered with 5 µm PS-MPs for 28 consecutive days in this study. The open-field test and the elevated plus-maze test were performed to evaluate the anxiety-like behavior, 16S rRNA sequencing and untargeted metabolomics analysis were used to detect the changes of gut microbiota and serum metabolites. Our results indicated that PS-MPs exposure activated hippocampal inflammation and induced anxiety-like behavior in mice. Meanwhile, PS-MPs disturbed the gut microbiota, impaired the intestinal barrier, and aroused peripheral inflammation. Specifically, PS-MPs increased the abundance of pathogenic microbiota Tuzzerella, while lowered the abundance of probiotics Faecalibaculum and Akkermansia. Interestingly, eliminating the gut microbiota protected against the deleterious effects of PS-MPs on intestinal barrier integrity, reduced the levels of peripheral inflammatory cytokines, and ameliorated anxiety-like behavior. Additionally, green tea's primary bioactive constituent, epigallocatechin-3-gallate (EGCG), optimized gut microbial composition, improved intestinal barrier function, reduced peripheral inflammation, and exerted anti-anxiety effects by inhibiting the hippocampal TLR4/MyD88/NF-κB signaling cascade. EGCG also remodeled serum metabolism, especially modulated purine metabolism. These findings suggested that gut microbiota participates in PS-MPs-induced anxiety-like behavior by modulating the gut-brain axis, and that EGCG could serve as a potential preventive strategy.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Mice, Inbred C57BL , Microplastics , Plastics , Polystyrenes/toxicity , RNA, Ribosomal, 16S , Homeostasis , Inflammation/chemically induced , Mammals
10.
Mol Clin Oncol ; 19(1): 57, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37359714

ABSTRACT

Radiation-related nasopharyngeal necrosis (RRNN) is a rare and often fatal complication in patients with nasopharyngeal carcinoma (NPC). Currently, no standard treatments are recommended for RRNN. The effects of traditional conservative treatments are suboptimal, and surgery for RRNN cannot be performed by inexperienced doctors. In the present study, the use of Endostar in two patients with RRNN was evaluated. Two patients with RRNN were treated at the Department of Oncology, Panyu Central Hospital (Guangzhou, China). Endostar was administrated (15 mg/day from day 1 to day 7, every three weeks) intravenously for four and seven cycles in a male and a female patient, respectively. The effects of Endostar were assessed using magnetic resonance imaging (MRI) and a nasopharyngoscope. The symptoms of RRNN in both patients were relieved after treatment with Endostar. MRI and nasopharyngoscope analysis revealed that necrosis of the nasopharynx was substantially decreased and nasopharyngeal ulcers were healed. Endostar has the potential to be a novel, effective therapy for the treatment of patients with RRNN. However, clinical trials are required to confirm the results of the present study.

11.
Front Microbiol ; 14: 1140440, 2023.
Article in English | MEDLINE | ID: mdl-37180225

ABSTRACT

Introduction: Burn injury has been shown to lead to changes in the composition of the gut microbiome and cause other damage in patients. However, little is known about how the gut microbial community evolves in individuals who have recovered from burn injury. Methods: In this study, we established a model of deep partial-thickness burn in mice and collected fecal samples at eight time points (pre-burn, 1, 3, 5, 7, 14, 21, and 28 days post-burn) for 16S rRNA amplification and high-throughput sequencing. Results: The results of the sequencing were analyzed using measures of alpha diversity, and beta diversity and taxonomy. We observed that the richness of the gut microbiome declined from day 7 post-burn and that the principal component and microbial community structure varied over time. On day 28 after the burn, the microbiome composition largely returned to the pre-burn level, although day 5 was a turning point for change. Some probiotics, such as the Lachnospiraceae_NK4A136_group, decreased in composition after the burn but were restored in the later recovery period. In contrast, Proteobacteria showed an opposite trend, which is known to include potential pathogenic bacteria. Conclusion: These findings demonstrate gut microbial dysbiosis after burn injury and provide new insights into the burn-related dysbiosis of the gut microbiome and strategies for improving the treatment of burn injury from the perspective of the microbiota.

12.
Front Microbiol ; 14: 1143648, 2023.
Article in English | MEDLINE | ID: mdl-37089558

ABSTRACT

Introduction: Depression is a common mental disorder that affects approximately 350 million people worldwide. Much remains unknown about the molecular mechanisms underlying this complex disorder. Sigma-1 receptor (Sig-1R) is expressed at high levels in the central nervous system. Increasing evidence has demonstrated a close association between the Sig-1R and depression. Recently, research has suggested that the gut microbiota may play a crucial role in the development of depression. Methods: Male Sig-1R knockout (Sig-1R KO) and wild-type (WT) mice were used for this study. All transgenic mice were of a pure C57BL/6J background. Mice received a daily gavage of vancomycin (100 mg/kg), neomycin sulfate (200 mg/kg), metronidazole (200 mg/kg), and ampicillin (200 mg/kg) for one week to deplete gut microbiota. Fecal microbiota transplantation (FMT) was conducted to assess the effects of gut microbiota. Depression-like behaviors was evaluated by tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT). Gut microbiota was analyzed by 16s rRNA and hippocampal transcriptome changes were assessed by RNA-seq. Results: We found that Sig-1R knockout induced depression-like behaviors in mice, including a significant reduction in immobility time and an increase in latency to immobility in the FST and TST, which was reversed upon clearance of gut microbiota with antibiotic treatment. Sig-1R knockout significantly altered the composition of the gut microbiota. At the genus level, the abundance of Alistipes, Alloprevotella, and Lleibacterium decreased significantly. Gut microbiota dysfunction and depression-like phenotypes in Sig-1R knockout mice could be reproduced through FMT experiments. Additionally, hippocampal RNA sequencing identified multiple KEGG pathways that are associated with depression. We also discovered that the cAMP/CREB/BDNF signaling pathway is inhibited in the Sig-1R KO group along with lower expression of neurotrophic factors including CTNF, TGF-α and NGF. Fecal bacteria transplantation from Sig-1R KO mice also inhibited cAMP/CREB/BDNF signaling pathway. Discussion: In our study, we found that the gut-brain axis may be a potential mechanism through which Sig-1R regulates depression-like behaviors. Our study provides new insights into the mechanisms by which Sig-1R regulates depression and further supports the concept of the gut-brain axis.

13.
Chem Biol Interact ; 379: 110512, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37116852

ABSTRACT

Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.


Subject(s)
Gastrointestinal Microbiome , Methamphetamine , Male , Mice , Animals , Methamphetamine/toxicity , Cardiotoxicity , Phosphatidylinositol 3-Kinases , Anti-Bacterial Agents
14.
Toxicology ; 486: 153447, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36720452

ABSTRACT

Methamphetamine (Meth) abuse can cause severe anxiety disorder and interfere with gut homeostasis. Obeticholic acid (OCA) has emerged as a protective agent against diet-related anxiety that improves gut homeostasis. The potential for OCA to ameliorate Meth-induced anxiety, and the microbial mechanisms involved, remain obscure. Here, C57/BL6 mice were intraperitoneally injected with Meth (15 mg/kg) to induce anxiety-like behavior. 16 S rRNA sequence analysis and fecal microbiome transplantation (FMT) were used to profile the gut microbiome and evaluate its effects, respectively. Orally administered OCA was investigated for protection against Meth-induced anxiety. Results indicated that Meth mediated anxiety-like behavior, aroused hippocampal neuroinflammation through activation of the TLR4/MyD88/NF-κB pathway, weakened intestinal barrier and disturbed the gut microbiome. Specifically, abundance of anxiety-related Rikenella was increased. FMT from Meth-administrated mice also weakened intestinal barrier and elevated serum LPS, inducing hippocampal neuroinflammation and anxiety-like behavior in recipient mice. Finally, OCA pretreatment ameliorated Meth-induced impairment of gut homeostasis by reshaping the microbial composition and improving the intestinal barrier. Meth-induced anxiety-like behavior and hippocampal neuroinflammation were also ameliorated by OCA pretreatment. These preliminary findings reveal the crucial role of gut microbiota in Meth-induced anxiety-like behavior and neuroinflammation, highlighting OCA as a potential candidate for the prevention of Meth-induced anxiety.


Subject(s)
Methamphetamine , Microbiota , Mice , Animals , Methamphetamine/toxicity , Neuroinflammatory Diseases , Anxiety/chemically induced , Anxiety/prevention & control
15.
Food Chem Toxicol ; 166: 113208, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688268

ABSTRACT

Methamphetamine (Meth), an addictive psychostimulant of abuse worldwide, has been a common cause of acute toxic hepatitis in adults. Gut microbiota has emerged as a modulator of host immunity via metabolic pathways. However, the microbial mechanism of Meth-induced hepatic inflammation and effective therapeutic strategies remain unknown. Here, mice were intraperitoneally (i.p.) injected with Meth to induce hepatotoxicity. Cecal microbiome and bile acids (BAs) composition were analyzed after Meth administration. Fecal microbiota transplantation (FMT) technology was utilized to investigate the role of microbiota. Additionally, the protective effects of obeticholic acid (OCA), an agonist of farnesoid X receptor (FXR), were evaluated. Results indicated that Meth administration induced hepatic cholestasis, dysfunction and aroused hepatic inflammation by stimulating the TLR4/MyD88/NF-κB pathway in mice. Meanwhile, Meth disturbed the cecal microbiome and impaired the homeostasis of BAs. Interestingly, FMT from Meth administered mice resulted in serum and hepatic BA accumulation and transferred similar phenotypic changes into the healthy recipient mice. Finally, OCA normalized Meth-induced BA accumulation in both serum and the liver, and effectively protected against Meth-induced hepatic dysfunction and inflammation by suppressing the TLR4/MyD88/NF-κB pathway. This study established the importance of microbial mechanism and its inhibition as a potential therapeutic target to treat Meth-related hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Gastrointestinal Microbiome , Methamphetamine , Animals , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Homeostasis , Inflammation/drug therapy , Liver , Methamphetamine/toxicity , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Toll-Like Receptor 4/metabolism
16.
Forensic Sci Med Pathol ; 18(3): 319-328, 2022 09.
Article in English | MEDLINE | ID: mdl-35543929

ABSTRACT

The identification of ante- and post-mortem burns is challenging in forensic pathology. In this study, microarray analysis was used to detect the mRNA expression profiles in the skin of an experimental burn mouse model; the results were validated using RT-qPCR. Differentially expressed mRNAs (DE-mRNAs) were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our results revealed that mRNA expression of 501 genes was significantly different, of which 273 were upregulated and 228 were downregulated in ante-mortem burned mice skin. The expression levels of eight random mRNAs were consistent when measured using the microarray assay-based method and RT-qPCR. Genes from different functional categories and signalling pathways were enriched, including interleukin-20 binding, type IV hypersensitivity, negative regulation of acute inflammatory response, sensory organ development, endocytosis, neuroactive ligand-receptor interaction, and Jak-STAT signalling pathway. Only five of the eight mRNAs exhibited consistent changes in expression between burned skin samples of mice and human autopsy specimens. Our findings showed that DE-mRNAs revealed using microarray are potential biomarkers of ante-mortem burns. However, DE-mRNAs identified from experimental animal models cannot be directly extended to autopsy specimens without careful validation.


Subject(s)
Burns , Gene Expression Profiling , Animals , Humans , Gene Expression Profiling/methods , Pilot Projects , Ligands , Microarray Analysis , Biomarkers , RNA, Messenger/metabolism , Interleukins/genetics
17.
Front Microbiol ; 13: 755189, 2022.
Article in English | MEDLINE | ID: mdl-35509309

ABSTRACT

As an illicit psychostimulant, repeated methamphetamine (MA) exposure results in addiction and causes severe neurotoxicity. Studies have revealed complex interactions among gut homeostasis, metabolism, and the central nervous system (CNS). To investigate the disturbance of gut homeostasis and metabolism in MA-induced neurotoxicity, 2 mg/kg MA or equal volume saline was intraperitoneally (i.p.) injected into C57BL/6 mice. Behavioral tests and western blotting were used to evaluate neurotoxicity. To determine alterations of colonic dysbiosis, 16s rRNA gene sequencing was performed to analyze the status of gut microbiota, while RNA-sequencing (RNA-seq) and Western Blot analysis were performed to detect colonic damage. Serum metabolome was profiled by LC-MS analysis. We found that MA induced locomotor sensitization, depression-, and anxiety-like behaviors in mice, along with dysfunction of the dopaminergic system and stimulation of autophagy as well as apoptosis in the striatum. Notably, MA significantly decreased microbial diversity and altered the component of microbiota. Moreover, findings from RNA-seq implied stimulation of the inflammation-related pathway after MA treatment. Western blotting confirmed that MA mediated colonic inflammation by activating the TLR4-MyD88-NF-κB pathway and impaired colonic barrier. In addition, serum metabolome was reshaped after MA treatment. Specifically, bacteroides-derived sphingolipids and serotonin were obviously altered, which were closely correlated with locomotor sensitization, depression-, and anxiety-like behaviors. These findings suggest that MA disrupts gut homeostasis by altering its microbiome and arousing inflammation, and reshapes serum metabolome, which provide new insights into understanding the interactions between gut homeostasis and MA-induced neurotoxicity.

18.
J Microbiol Immunol Infect ; 55(2): 282-290, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33839057

ABSTRACT

BACKGROUND/PURPOSE: There are limited studies on species distribution and susceptibility profiles of Aspergillus strains isolated from patients with otomycosis in China. METHODS: A total of 69 confirmed Aspergillus species isolates were obtained from ear swabs of patients diagnosed with otomycosis from 2017 to 2018 in northern China. Identification of these Aspergillus isolates at the species level was performed using conventional morphological methods and MALDI-TOF MS in combination with molecular sequencing, and in vitro susceptibility to nine antifungal agents was evaluated using the Sensititre YeastOne system. RESULTS: The Aspergillus section Nigri had the greatest distribution of Aspergillus isolates. A. welwitschiae (n = 25) was the most predominant isolate in section Nigri, followed by A. tubingensis (n = 12) and A. niger (n = 11). Other Aspergillus species were also isolated, including A. terreus (n = 11), A. flavus/A. oryzae (n = 8), and A. fumigatus (n = 2). Amphotericin B, posaconazole, and echinocandins were highly in vitro active against all the isolates tested. 2.9% (2/69) of the isolates were resistant to azoles in our study, including one A. niger isolate with a high MIC value for itraconazole (ITR) (16 mg/L) and one A. tubingensis isolate cross-resistant to both voriconazole (VOR) (MIC >8 mg/L) and ITR (MIC >16 mg/L). One A. welwitschiae and one A. niger isolate both had increased MIC values of 4 mg/L against VOR. CONCLUSIONS: A. welwitschiae was the most prevalent Aspergillus species isolated from patients with otomycosis. Our findings also indicated that the azole-resistant Aspergillus section Nigri should be utilized to guide clinical medication for Otomycosis.


Subject(s)
Aspergillosis , Otomycosis , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/microbiology , Aspergillus , Azoles , Humans , Itraconazole/therapeutic use , Microbial Sensitivity Tests , Otomycosis/microbiology , Voriconazole/therapeutic use
19.
J Cancer ; 12(20): 6209-6215, 2021.
Article in English | MEDLINE | ID: mdl-34539894

ABSTRACT

Background: Weekly and triweekly cisplatin-based concurrent chemoradiotherapy (CCRT) have been used in the treatment of nasopharyngeal carcinoma (NPC). Objective: This study aimed to compare the benefits and risks between the two treatments. Methods: We systematically searched electronic databases for prospective and retrospective clinical studies of NPC patients who received weekly compared with triweekly cisplatin-based CCRT. The primary endpoints comprised overall, failure-free, distant metastasis-free, and locoregional recurrence-free survivals (OS, FFS, DMFS, and LRFS). Secondary endpoints were toxicities. Results: Six studies were included in the systematic review, of which four with 1515 NPC patients were eligible for further pooled analysis. There were no significant differences between weekly and triweekly groups in terms of 5-year OS (odds ratio [OR] 0.95, 95% confidence interval [CI] 0.51-1.79), FFS (OR 1.09, 95% CI 0.67-1.76), DMFS (OR 1.25, 95% CI 0.54-2.92), and LRFS (OR 0.83, 95% CI 0.55-1.25). For grade ≥ 3 toxicities, the weekly group had higher risks of anemia (risk ratio [RR] 2.96, 95% CI 1.12-7.81) and thrombocytopenia (RR 2.75, 95% CI 1.54-4.90), but a lower incidence of vomiting (RR 0.34, 95% CI 0.18-0.63) versus the triweekly group. Conclusion and Relevance: Both weekly and triweekly schedules could be recommended to NPC patients during CCRT. Additionally, hematologic adverse events in weekly strategy and non-hematologic adverse events in triweekly strategy are of higher concern.

20.
Environ Pollut ; 233: 1104-1112, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29033174

ABSTRACT

The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Particle Size , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...