Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Gels ; 8(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36135288

ABSTRACT

Under the background that the in-depth profile control technology is gradually applied in low-permeability fractured reservoirs, this paper regards block H of Changqing Oilfield as the research object, referring to the range of its physical parameters and field application data. Three common in-depth profile control agents (PCAs), nanosphere suspension, poly(ethylene glycol) single-phase gel particle (PEG) and cross-linked bulk gel and swelling particle (CBG-SP), are selected to investigate the compatibility between the fractured channels and the PCAs through a series of experiments. The experimental results show that the nanospheres with particle sizes of 100 nm and 300 nm have good injectivity and deep migration ability, which remains the overall core plugging rate at a high level. The residual resistance coefficient of 800 nm nanospheres decreases in a "cliff" manner along the injection direction due to the formation of blockage in the front section, resulting in a very low plugging rate in the rear section. The injection rate is an important parameter that affects the effect of PEG in the fractured channels. When the injection rate is lower than 0.1 mL/min, the plugging ability will be weakened, and if the injection rate is higher than 0.2 mL/min, the core plugging will occur. The appropriate injection rate will promote the better effect of PEG with the plugging rate > 90%. The average plugging rate of CBG-SP in fractured rock core is about 80%, and the overall control and displacement effect is good. Based on the experimental data of PCAs, the optimization criteria of slug configuration and pro-duction parameters are proposed. According to the principle "blocking, controlling and displacing", references are provided for PCAs screening and parameters selection of field implementation.

2.
Gels ; 8(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892726

ABSTRACT

Weak gel is a gel system formed by the mixing and crosslinking of a low-concentration polymer and a slow-release crosslinker. It can be used for profile control in deep reservoir, but its effect is greatly affected by mechanical shearing. Currently, the shearing effect on weak gel is mainly studied by way of mechanical stirring, while the effect of porous media shear on weak gel molecules and properties has been rarely discussed. In this paper, polymer solution, aluminum gel and phenolic gel were prepared. The molecular coil size, viscoelastic modulus and microscopic aggregation morphology in water solution of three systems before and after core shearing were investigated, and the injection performance of the three systems in cores with different permeabilities was tested by physical simulation experiments. The study results show that at equivalent permeability, the system with a larger equivalent sphere diameter of molecular coil is more seriously sheared and suffers greater viscosity loss. In the core with permeability of 1.0 D, polymer solution remains as the aggregation, while phenolic gel and aluminum gel cannot form network aggregations and they are inferior to polymer solution in migration capacity in the mid-deep part of the core. In the core with permeability of 1-5.8 D, the polymer solution remains as a Newtonian fluid, while phenolic gel and aluminum gel become purely viscous non-Newtonian fluids. The elastic modulus of aluminum gel and phenolic gel is four times more than that of a polymer. In the core with permeability higher than 8.5 D, aluminum gel and phenolic gel migrate with less effect by core shearing, and their profile control capacity in deep reservoir is higher than that of the polymer. In the core with permeability lower than 8.5 D, because the monomolecular activity of weak gels becomes poor, they migrate in porous media with more effect by core shearing, and their profile control and oil displacement capacity in deep reservoir is lower than that of the polymer.

3.
Proc Natl Acad Sci U S A ; 111(13): 4910-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24639529

ABSTRACT

Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20 °N and 40 °N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m(-2) yr(-1) (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe-Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr(-1), which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Seasons , Trees/metabolism , Tropical Climate , Africa , Europe , Asia, Eastern , Geography , Nitrogen/metabolism , North America
4.
Glob Chang Biol ; 19(3): 798-810, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23504837

ABSTRACT

Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.


Subject(s)
Carbon/analysis , Climate Change , Ecosystem , China
5.
Ying Yong Sheng Tai Xue Bao ; 17(8): 1382-8, 2006 Aug.
Article in Chinese | MEDLINE | ID: mdl-17066688

ABSTRACT

In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.


Subject(s)
Biomass , Pinus/growth & development , Tracheophyta/growth & development , China , Cunninghamia/growth & development , Regression Analysis
6.
Ying Yong Sheng Tai Xue Bao ; 15(7): 1113-20, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15506080

ABSTRACT

The structure and dynamics of coniferous forests in Changbai Mountain were studied at different spatial scales, including ground survey of permanent plots and analysis of multitemporal satellite images. Plot-scale examinations showed that the mortality rate was 7% - 9%, and the recruitment rate was 18% - 20% per 10 years. Species composition changed over time. Picea jezoensis var. microsperma, Abies nephrolepis and Betula ermanii presented a self-maintaining capability, because they could regenerate under canopy. Larix olgensis was a pioneer species and could regenerate only in open land or gaps. This species played an important role by providing conditions for the regeneration of spruce and fir. The tree density in the mature forest was 1 000 stems x hm(-2) for trees bigger than 3 cm in diameter, which showed no significant variations among different stands. Landsat TM images were used for detecting the cover changes from 1984 to 1997. Large scales of wind throw were detected by this approach. Based on t he analysis of radiance changes at the landscape scale, the pixel number of the disturbed area was similar to that of the succeeding stands, suggesting that the forest was in a state of equilibrium. Fine gaps, however, were difficult to identify with the TM data because of its coarse resolution. The mosaic structure ofthe subalpine vegetation was characterized by scattered larch patches. At the landscape level, the vegetation was in a stable stage.


Subject(s)
Abies/physiology , Betula/physiology , Picea/physiology , Tracheophyta/physiology , Abies/growth & development , Betula/growth & development , China , Picea/growth & development , Satellite Communications , Tracheophyta/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...