Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.213
Filter
1.
Article in English | MEDLINE | ID: mdl-38728440

ABSTRACT

Detection of leaks of flammable methane (CH4) gas in a timely manner can mitigate health, safety, and environmental risks. Zinc oxide (ZnO), a polar semiconductor with controllable surface defects, is a promising material for gas sensing. In this study, Ag-Ru co-doped into self-assembled ZnO nanorod arrays (ZnO NRs) was prepared by a one-step hydrothermal method. The Ag-Ru co-doped sample shows a good hydrophobic property as a result of its particular microstructure, which results in high humidity resistance. In addition, oxygen vacancy density significantly increased after Ag-Ru co-doping. Density functional theory (DFT) calculations revealed an exceptionally high charge density accumulated at the Ru sites and the formation of a localized strong electric field, which provides additional energy for the CH4 reaction with •O2- at the surface at room temperature. Optimized AgRu0.025-ZnO demonstrated an outstanding CH4 sensing performance, with a limit of detection (LOD) as low as 2.24 ppm under free-heat and free-light conditions. These findings suggest that introducing defects into the ZnO lattice, such as oxygen vacancies and localized ions, offers a promising approach to improving the gas sensing performance.

2.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38725342

ABSTRACT

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Subject(s)
Cell Movement , Cell Proliferation , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ferroptosis/genetics , 3' Untranslated Regions
3.
Front Neurol ; 15: 1372431, 2024.
Article in English | MEDLINE | ID: mdl-38742047

ABSTRACT

Introduction: With the rapid development of artificial intelligence technology, machine learning algorithms have been widely applied at various stages of stroke diagnosis, treatment, and prognosis, demonstrating significant potential. A correlation between stroke and cytokine levels in the human body has recently been reported. Our study aimed to establish machine-learning models based on cytokine features to enhance the decision-making capabilities of clinical physicians. Methods: This study recruited 2346 stroke patients and 2128 healthy control subjects from Chongqing University Central Hospital. A predictive model was established through clinical experiments and collection of clinical laboratory tests and demographic variables at admission. Three classification algorithms, namely Random Forest, Gradient Boosting, and Support Vector Machine, were employed. The models were evaluated using methods such as ROC curves, AUC values, and calibration curves. Results: Through univariate feature selection, we selected 14 features and constructed three machine-learning models: Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Our results indicated that in the training set, the RF model outperformed the GBM and SVM models in terms of both the AUC value and sensitivity. We ranked the features using the RF algorithm, and the results showed that IL-6, IL-5, IL-10, and IL-2 had high importance scores and ranked at the top. In the test set, the stroke model demonstrated a good generalization ability, as evidenced by the ROC curve, confusion matrix, and calibration curve, confirming its reliability as a predictive model for stroke. Discussion: We focused on utilizing cytokines as features to establish stroke prediction models. Analyses of the ROC curve, confusion matrix, and calibration curve of the test set demonstrated that our models exhibited a strong generalization ability, which could be applied in stroke prediction.

4.
Article in English | MEDLINE | ID: mdl-38744667

ABSTRACT

BACKGROUND AND AIM: False positives (FPs) pose a significant challenge in the application of artificial intelligence (AI) for polyp detection during colonoscopy. The study aimed to quantitatively evaluate the impact of computer-aided polyp detection (CADe) systems' FPs on endoscopists. METHODS: The model's FPs were categorized into four gradients: 0-5, 5-10, 10-15, and 15-20 FPs per minute (FPPM). Fifty-six colonoscopy videos were collected for a crossover study involving 10 endoscopists. Polyp missed rate (PMR) was set as primary outcome. Subsequently, to further verify the impact of FPPM on the assistance capability of AI in clinical environments, a secondary analysis was conducted on a prospective randomized controlled trial (RCT) from Renmin Hospital of Wuhan University in China from July 1 to October 15, 2020, with the adenoma detection rate (ADR) as primary outcome. RESULTS: Compared with routine group, CADe reduced PMR when FPPM was less than 5. However, with the continuous increase of FPPM, the beneficial effect of CADe gradually weakens. For secondary analysis of RCT, a total of 956 patients were enrolled. In AI-assisted group, ADR is higher when FPPM ≤ 5 compared with FPPM > 5 (CADe group: 27.78% vs 11.90%; P = 0.014; odds ratio [OR], 0.351; 95% confidence interval [CI], 0.152-0.812; COMBO group: 38.40% vs 23.46%, P = 0.029; OR, 0.427; 95% CI, 0.199-0.916). After AI intervention, ADR increased when FPPM ≤ 5 (27.78% vs 14.76%; P = 0.001; OR, 0.399; 95% CI, 0.231-0.690), but no statistically significant difference was found when FPPM > 5 (11.90% vs 14.76%, P = 0.788; OR, 1.111; 95% CI, 0.514-2.403). CONCLUSION: The level of FPs of CADe does affect its effectiveness as an aid to endoscopists, with its best effect when FPPM is less than 5.

5.
Sci Rep ; 14(1): 11008, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744845

ABSTRACT

Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.


Subject(s)
Apoptosis , Cell Proliferation , Hepatocytes , Liver Regeneration , NF-E2-Related Factor 2 , Polycomb Repressive Complex 1 , Signal Transduction , Animals , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Hepatocytes/metabolism , Liver Regeneration/genetics , Apoptosis/genetics , Hepatectomy , Male , Gene Silencing , Mice, Inbred C57BL , Liver/metabolism
6.
Neuroendocrinology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718758

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) plays a critical role of reproduction in vertebrate since its discovery. Recently, a regulatory role of GnIH in appetite and the energy metabolism has emerged, despite its precise physiological mechanisms remain unknown. Thus, the present study evaluated the effects of a single or long-term GnIH treatments (administered via intraperitoneal injection) on the food intake, weight and glucolipid metabolism of chickens, while investigated the possible neuroendocrinology factors and its mechanism that involved in GnIH-induced obesity and glucolipid metabolism disorder. Our results showed that the intraperitoneal administration of GnIH to chickens resulted in marked body mass increased, hyperlipidemia, hyperglycemia and glucose intolerance. Subsequently, the results of metabolomics and pharmacological inhibition of 5-HT2C receptor studies revealed that blocked 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight and the levels of blood glucose and lipid, resulted in GnIH-induced hyperglycaemia, hyperlipidemia and hepatic lipid deposition even worse, suggesting that peripheral 5-HT via 5-HT2C receptor may act as a negative feedback regulator to interplay with GnIH and jointly homeostatic control of energy balance in chickens. Our present study provide evidence of the cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level and to propose a molecular basis for these interactions, suggesting that functional interaction between GnIH and 5-HT may open new avenues to understand the mechanism of neuroendocrine network involved in appetite and energy metabolism as well as provide a new therapeutic strategy to prevent obesity, diabetes and metabolic disorders.

7.
Poult Sci ; 103(7): 103757, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38697006

ABSTRACT

Stress is known to disrupt the intestinal barrier and induce intestinal dysfunction. A critical role for gonadotropin inhibitory hormone (GnIH) in stress has emerged. However, whether GnIH mediates stress-induced intestinal dysfunction remains unknown. The present study explored this question through in vivo and in vitro experiments in hens. Our in vivo experiments showed that continuous intraperitoneal injection of GnIH not only significantly increased the concentration of stress hormones in serum, but also significantly elevated the mRNA expression of glucocorticoid receptor (GR) in the duodenum and jejunum. Moreover, morphological and molecular analyses revealed that GnIH disrupted the physical and chemical barriers of the intestine and dramatically increased inflammatory factor levels in the intestine and serum of hens. Interestingly, the microbiomics results showed that GnIH altered the structure and composition of the gut flora in the cecum, revealing an increased abundance of harmful intestinal bacteria such as Desulfovibrionaceae. Similar results were found in in vitro studies in which the GnIH-induced intestinal mucosal barrier was disrupted, and inflammation increased in jejunal explants, although no significant difference was found in the expression of GR between the control and GnIH groups. Our results demonstrated that GnIH not only directly damaged intestinal barriers and elevated intestinal inflammation but also mediated stress and microflora imbalance-induced intestinal function disorder, suggesting that GnIH is a potential therapeutic target for gut dysfunction, stress-induced intestinal function disorder, and inflammatory bowel disease in animals and humans.

8.
Ann Hematol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736014

ABSTRACT

There has been no severity evaluation model for pediatric patients with hemophagocytic lymphohistiocytosis (HLH) that uses readily available parameters. This study aimed to develop a novel model for predicting the early mortality risk in pediatric patients with HLH using easily obtained parameters whatever etiologic subtype. Patients from one center were divided into training and validation sets for model derivation. The developed model was validated using an independent validation cohort from the second center. The prediction model with nomogram was developed based on logistic regression. The model performance underwent internal and external evaluation and validation using the area under the receiver operating characteristic curve (AUC), calibration curve with 1000 bootstrap resampling, and decision curve analysis (DCA). Model performance was compared with the most prevalent severity evaluation scores, including the PELOD-2, P-MODS, and pSOFA scores. The prediction model included nine variables: glutamic-pyruvic transaminase, albumin, globulin, myohemoglobin, creatine kinase, serum potassium, procalcitonin, serum ferritin, and interval between onset and diagnosis. The AUC of the model for predicting the 28-day mortality was 0.933 and 0.932 in the training and validation sets, respectively. The AUC values of the HScore, PELOD-2, P-MODS and pSOFA were 0.815, 0.745, 0.659 and 0.788, respectively. The DCA of the 28-day mortality prediction exhibited a greater net benefit than the HScore, PELOD-2, P-MODS and pSOFA. Subgroup analyses demonstrated good model performance across HLH subtypes. The novel mortality prediction model in this study can contribute to the rapid assessment of early mortality risk after diagnosis with readily available parameters.

9.
World J Gastrointest Oncol ; 16(4): 1213-1226, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660630

ABSTRACT

BACKGROUND: Portal vein thrombosis (PVT), a complication of liver cirrhosis, is a major public health concern. PVT prediction is the most effective method for PVT diagnosis and treatment. AIM: To develop and validate a nomogram and network calculator based on clinical indicators to predict PVT in patients with cirrhosis. METHODS: Patients with cirrhosis hospitalized between January 2016 and December 2021 at the First Hospital of Lanzhou University were screened and 643 patients with cirrhosis who met the eligibility criteria were retrieved. Following a 1:1 propensity score matching 572 patients with cirrhosis were screened, and relevant clinical data were collected. PVT risk factors were identified using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis. Variance inflation factors and correlation matrix plots were used to analyze multicollinearity among the variables. A nomogram was constructed to predict the probability of PVT based on independent risk factors for PVT, and its predictive performance was verified using a receiver operating characteristic curve (ROC), calibration curves, and decision curve analysis (DCA). Finally, a network calculator was constructed based on the nomograms. RESULTS: This study enrolled 286 cirrhosis patients with PVT and 286 without PVT. LASSO analysis revealed 13 variables as strongly associated with PVT occurrence. Multivariate logistic regression analysis revealed nine indicators as independent PVT risk factors, including etiology, ascites, gastroesophageal varices, platelet count, D-dimer, portal vein diameter, portal vein velocity, aspartate transaminase to neutrophil ratio index, and platelet-to-lymphocyte ratio. LASSO and correlation matrix plot results revealed no significant multicollinearity or correlation among the variables. A nomogram was constructed based on the screened independent risk factors. The nomogram had excellent predictive performance, with an area under the ROC curve of 0.821 and 0.829 in the training and testing groups, respectively. Calibration curves and DCA revealed its good clinical performance. Finally, the optimal cutoff value for the total nomogram score was 0.513. The sensitivity and specificity of the optimal cutoff values were 0.822 and 0.706, respectively. CONCLUSION: A nomogram for predicting PVT occurrence was successfully developed and validated, and a network calculator was constructed. This can enable clinicians to rapidly and easily identify high PVT risk groups.

10.
Anal Methods ; 16(16): 2606-2613, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38618990

ABSTRACT

2,6-Pyridinedicarboxylic acid (DPA) is a significant biomarker of anthrax, which is a deadly infectious disease for human beings. However, the development of a convenient anthrax detection method is still a challenge. Herein, we report a novel europium metal-organic framework (Eu-MOF) with an enhanced peroxidase-like activity and fluorescence property for DPA detection. The Eu-MOF was one-step synthesized using Eu3+ ions and 2-methylimidazole. In the presence of DPA, the intrinsic fluorescence of Eu3+ ions is sensitized, the fluorescence intensity linearly increases with an increase in DPA concentration, and the fluorescence color changes from blue to purple. Simultaneously, the peroxide-like activity of the Eu-MOF is enhanced by DPA, which can promote the oxidation of TMB to oxTMB. The absorbance values increase linearly with DPA concentrations, and the colorimetric images change from colorless to blue. The dual-mode detection of DPA has good sensitivity with a colorimetric detection limit of 0.67 µM and a fluorescent detection limit of 16.67 nM. Moreover, a simple detection method for DPA was developed using a smartphone with the RGB analysis system. A portable kit with standard color cards was developed using paper test strips. The proposed methods have good practicability for DPA detection in real samples. In conclusion, the developed Eu-MOF biosensor offers a valuable and general platform for anthrax diagnosis.


Subject(s)
Colorimetry , Europium , Metal-Organic Frameworks , Picolinic Acids , Europium/chemistry , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Picolinic Acids/analysis , Picolinic Acids/chemistry , Limit of Detection , Humans , Fluorescence , Anthrax/diagnosis , Smartphone , Spectrometry, Fluorescence/methods , Peroxidase/chemistry , Peroxidase/metabolism
11.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Article in English | MEDLINE | ID: mdl-38623080

ABSTRACT

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Mice , Humans , Hepatic Stellate Cells/pathology , Mice, Inbred C57BL , Liver Cirrhosis/chemically induced , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Fibrosis , Extracellular Vesicles/pathology , Mesenchymal Stem Cells/metabolism , Umbilical Cord , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism
12.
Cancer Rep (Hoboken) ; 7(4): e1978, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599581

ABSTRACT

BACKGROUND AND AIMS: Oncogenesis and tumor development have been related to oxidative stress (OS). The potential diagnostic utility of OS genes in hepatocellular carcinoma (HCC), however, remains uncertain. As a result, this work aimed to create a novel OS related-genes signature that could be used to predict the survival of HCC patients and to screen OS related-genes drugs that might be used for HCC treatment. METHODS: We used The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database to acquire mRNA expression profiles and clinical data for this research and the GeneCards database to obtain OS related-genes. Following that, biological functions from Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on differentially expressed OS-related genes (DEOSGs). Subsequently, the prognostic risk signature was constructed based on DEOSGs from the TCGA data that were screened by using univariate cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression, and multivariate cox analysis. At the same time, we developed a prognostic nomogram of HCC patients based on risk signature and clinical-pathological characteristics. The GEO data was used for validation. We used the receiver operating characteristic (ROC) curve, calibration curves, and Kaplan-Meier (KM) survival curves to examine the prediction value of the risk signature and nomogram. Finally, we screened the differentially expressed OS genes related drugs. RESULTS: We were able to recognize 9 OS genes linked to HCC prognosis. In addition, the KM curve revealed a statistically significant difference in overall survival (OS) between the high-risk and low-risk groups. The area under the curve (AUC) shows the independent prognostic value of the risk signature model. Meanwhile, the ROC curves and calibration curves show the strong prognostic power of the nomogram. The top three drugs with negative ratings were ZM-336372, lestaurtinib, and flunisolide, all of which inversely regulate different OS gene expressions. CONCLUSION: Our findings indicate that OS related-genes have a favorable prognostic value for HCC, which sheds new light on the relationship between oxidative stress and HCC, and suggests potential therapeutic strategies for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Oxidative Stress/genetics , Nomograms , Area Under Curve
13.
J Clin Transl Hepatol ; 12(4): 389-405, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38638377

ABSTRACT

Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.

14.
Phytomedicine ; 129: 155578, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38621328

ABSTRACT

BACKGROUND: Microglial activation plays a crucial role in injury and repair after cerebral ischemia, and microglial pyroptosis exacerbates ischemic injury. NOD-like receptor protein 3 (NLRP3) inflammasome activation has an important role in microglial polarization and pyroptosis. Aloe-emodin (AE) is a natural anthraquinone compound originated from rhubarb and aloe. It exerts antioxidative and anti-apoptotic effects during cerebral ischemia/reperfusion (I/R) injury. However, whether AE affects microglial polarization, pyroptosis, and NLRP3 inflammasome activation remains unknown. PURPOSE: This study aimed to explore the effects of AE on microglial polarization, pyroptosis, and NLRP3 inflammasome activation in the cerebral infarction area after I/R. METHODS: The transient middle cerebral artery occlusion (tMCAO) and oxygen-glucose deprivation/re-oxygenation (OGD/R) methods were used to create cerebral I/R models in vivo and in vitro, respectively. Neurological scores and triphenyl tetrazolium chloride and Nissl staining were used to assess the neuroprotective effects of AE. Immunofluorescence staining, quantitative polymerase chain reaction and western blot were applied to detect NLRP3 inflammasome activation and microglial polarization and pyroptosis levels after tMCAO or OGD/R. Cell viability and levels of interleukin (IL)-18 and IL-1ß were measured. Finally, MCC950 (an NLRP3-specific inhibitor) was used to evaluate whether AE affected microglial polarization and pyroptosis by regulating the activation of the NLRP3 inflammasome. RESULTS: AE improved neurological function scores and reduced the infarct area, brain edema rate, and Nissl-positive cell rate following I/R injury. It also showed a protective effect on BV-2 cells after OGD/R. AE inhibited microglial pyroptosis and induced M1 to M2 phenotype transformation and suppressed microglial NLRP3 inflammasome activation after tMCAO or OGD/R. The combined administration of AE and MCC950 had a synergistic effect on the inhibition of tMCAO- or OGD/R-induced NLRP3 inflammasome activation, which subsequently suppressed microglial pyroptosis and induced microglial phenotype transformation. CONCLUSION: AE exerts neuroprotective effects by regulating microglial polarization and pyroptosis through the inhibition of NLRP3 inflammasome activation after tMCAO or OGD/R. These findings provide new evidence of the molecular mechanisms underlying the neuroprotective effects of AE and may support the exploration of novel therapeutic strategies for cerebral ischemia.

15.
J Org Chem ; 89(8): 5883-5895, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38600052

ABSTRACT

By creating an unsymmetric double Michael acceptor 1, we were able to synthesize the nonaromatic-fused bicyclic furo[2,3-b]pyrrole nucleus using a domino Michael/oxa-Michael reaction. Adopting benzoyl acetonitrile 2d (CN as the electron-withdrawing group) as a substrate, we discovered a (DHQ)2AQN-catalyzed method for high diastereo- and enantioselectivity of those products. The reaction path has been determined by isolating the reaction intermediates, and density functional theory calculations support these findings. Beyond providing a synthetic approach, this work illustrated the compounds' possible use in antitumor activity.

17.
Am J Pathol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670529

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and prone to metastasis. It is unclear if cancer-associated fibroblasts (CAFs) affect the metastasis of ICC. Here, we have established ICC patient-derived CAF lines and related cancerous cell lines and analyzed the effects of CAFs on the tumor progressive properties of the ICC cancerous cells. Results demonstrated that CAFs can be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified B-lymphoma Mo-MLV insertion region 1 (PCGF4; alias BMI1) as a potential metastasis regulator. Strikingly, the changes of PCGF4 levels in ICC cells perfectly mirrored the restraining or promoting effects of CAFs on ICC migration. Our immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated to overall survival of ICC. We confirmed the promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, our data identified roles of CAFs on ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.

18.
Front Oncol ; 14: 1395166, 2024.
Article in English | MEDLINE | ID: mdl-38577324

ABSTRACT

[This corrects the article DOI: 10.3389/fonc.2024.1327851.].

19.
Sci Rep ; 14(1): 8023, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580805

ABSTRACT

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Subject(s)
Arsenic , Metals, Heavy , Selenium , Humans , Lead/toxicity , Arsenic/toxicity , Cadmium/toxicity , Mediation Analysis , Mineralocorticoids , Heavy Metal Poisoning , Zinc , Iron , Ions , China , Metals, Heavy/toxicity
20.
Sci Total Environ ; 923: 171405, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432385

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.


Subject(s)
Cadmium , Chemical and Drug Induced Liver Injury, Chronic , Rats , Animals , Cadmium/metabolism , Multiomics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Oxidative Stress , Ceramides/metabolism , Ceramides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...