Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4874-4883, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802829

ABSTRACT

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Humans , Quality of Life , Drug Delivery Systems , Arthritis, Rheumatoid/drug therapy , Autoimmune Diseases/drug therapy , Nanotechnology
2.
BMC Anesthesiol ; 23(1): 243, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474933

ABSTRACT

BACKGROUND: The risk of postoperative cognitive dysfunction(POCD) in laparoscopic surgery should not be overlooked. Intravenous lidocaine can reduce perioperative inflammatory response in patients undergoing laparoscopic surgery, while the effect of intraoperative intravenous lidocaine on postoperative cognitive function in patients undergoing laparoscopic colorectal cancer surgery has not been well studied. We investigated whether intraoperative lidocaine improves postoperative cognitive function after laparoscopic radical resection for colorectal cancer. METHODS: We conducted a prospective, randomized double blinded controlled trial to investigate the effect of intravenous lidocaine on rapid postoperative recovery in patients undergoing laparoscopic radical resection of colorectal cancer. The patients were randomly assigned to receive either intravenous lidocaine or saline. The primary outcome was cognitive dysfunction defined by a decrease from pre- to postoperative ≥ 2 of the Mini-Mental State Examination (MMSE) score, at the 3rd and the 7th postoperative days. Secondary outcomes were the MMSE raw score and parameters of the patients' postoperative recovery such as agitation and length of stay in the post-anaesthesia care unit (PACU), length of hospital stay, markers of inflammation (white blood cell count and CRP), and incidence of complications. RESULTS: Seventy-three patients in the lidocaine group and 77 patients in the control group completed the trial. The rate of cognitive dysfunction was lower in the lidocaine group than that in the control group, both at the 3rd (18.57% vs. 63.64% for each group respectively; RR = 0.26, 95%CI = 0.19-0.32; p < 0.0001) and at the 7th postoperative day (12.33% vs. 53.25% for each group respectively; RR = 0.28, 95%CI = 0.22-0.35; P < 0.001). The postoperative MMSE scores were also higher in the lidocaine group than in the control group both at the 3rd (median 25 vs. 24 respectively) and at the 7th postoperative day (26 vs. 24 respectively). Also, patients in the lidocaine group displayed a lower white blood cell count than the control group at the 1st postoperative day (8.5 ± 2.7 vs. 10.4 ± 3.3; p < 0. 001). No differences were evidenced for the other secondary outcomes. CONCLUSIONS: Intraoperative intravenous lidocaine can significantly improve postoperative cognitive function in patients undergoing laparoscopic radical resection of colorectal cancer. TRIAL REGISTRATION: Chinese Clinical Trial Registry (16/1/2022, registration number: ChiCTR2200055683).


Subject(s)
Colorectal Neoplasms , Colorectal Surgery , Laparoscopy , Humans , Lidocaine/adverse effects , Anesthetics, Local/adverse effects , Prospective Studies , Infusions, Intravenous , Laparoscopy/adverse effects , Double-Blind Method , Cognition , Colorectal Neoplasms/surgery , Pain, Postoperative/drug therapy
3.
Zhongguo Zhong Yao Za Zhi ; 48(1): 13-21, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725253

ABSTRACT

Rheumatoid arthritis(RA) is a chronic degenerative joint disease characterized by inflammation. Due to the complex causes, no specific therapy is available. Non-steroidal anti-inflammatory agents and corticosteroids are often used(long-term, oral/injection) to interfere with related pathways for reducing inflammatory response and delaying the progression of RA, which, however, induce many side effects. Microneedle, an emerging transdermal drug delivery system, is painless and less invasive and improves drug permeability. Thus, it is widely used in the treatment of RA and is expected to be a new strategy in clinical treatment. This paper summarized the application of microneedles in the treatment of RA, providing a reference for the development of new microneedles and the expansion of its clinical application.


Subject(s)
Arthritis, Rheumatoid , Drug Delivery Systems , Humans , Administration, Cutaneous , Pharmaceutical Preparations , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Needles
4.
J Transl Med ; 21(1): 20, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635710

ABSTRACT

Recent studies have identified DNA replication stress as an important feature of advanced prostate cancer (PCa). The identification of biomarkers for DNA replication stress could therefore facilitate risk stratification and help inform treatment options for PCa. Here, we designed a robust machine learning-based framework to comprehensively explore the impact of DNA replication stress on prognosis and treatment in 5 PCa bulk transcriptomic cohorts with a total of 905 patients. Bootstrap resampling-based univariate Cox regression and Boruta algorithm were applied to select a subset of DNA replication stress genes that were more clinically relevant. Next, we benchmarked 7 survival-related machine-learning algorithms for PCa recurrence using nested cross-validation. Multi-omic and drug sensitivity data were also utilized to characterize PCa with various DNA replication stress. We found that the hyperparameter-tuned eXtreme Gradient Boosting model outperformed other tuned models and was therefore used to establish a robust replication stress signature (RSS). RSS demonstrated superior performance over most clinical features and other PCa signatures in predicting PCa recurrence across cohorts. Lower RSS was characterized by enriched metabolism pathways, high androgen activity, and a favorable prognosis. In contrast, higher RSS was significantly associated with TP53, RB1, and PTEN deletion, exhibited increased proliferation and DNA replication stress, and was more immune-suppressive with a higher chance of immunotherapy response. In silico screening identified 13 potential targets (e.g. TOP2A, CDK9, and RRM2) from 2249 druggable targets, and 2 therapeutic agents (irinotecan and topotecan) for RSS-high patients. Additionally, RSS-high patients were more responsive to taxane-based chemotherapy and Poly (ADP-ribose) polymerase inhibitors, whereas RSS-low patients were more sensitive to androgen deprivation therapy. In conclusion, a robust machine-learning framework was used to reveal the great potential of RSS for personalized risk stratification and therapeutic implications in PCa.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgens , Androgen Antagonists/therapeutic use , Machine Learning , DNA Replication
5.
BMC Complement Med Ther ; 22(1): 312, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435778

ABSTRACT

BACKGROUND: The mechanism of action of Angelicae Pubescentis Radix in rheumatoid arthritis treatment is complex; the pathways and protein targets involved remain unclear. This study predicted the targets and signaling pathways of Angelicae Pubescentis Radix for rheumatoid arthritis treatment using network pharmacology and molecular docking technology and clarified its mechanism of action using in vitro cellular experiments. METHODS: Angelicae Pubescentis Radix active components and related targets were retrieved from the traditional Chinese medicine systems pharmacology database. All human proteins were mined from the global protein database, and the network of active components and targets of Angelicae Pubescentis Radix was drawn using Cytoscape 3.7.1. GeneCard, Online Mendelian Inheritance in Man, and DrugBank databases were used to mine rheumatoid arthritis-related genes. Metascape was used for Gene Ontology function analysis and Kyoto Encyclopedia of Genes and Genomes enrichment pathways. ß-sitosterol's molecular docking was determined using AutoDock Tools; pathway verification was performed in the Kyoto Encyclopedia of Genes and Genomes database, and the verified genes were input into the Human Protein Atlas database to observe the expression levels in various human body tissues. RESULTS: Eight main active components were screened out of Angelicae Pubescentis Radix from the traditional Chinese medicine systems pharmacology database, and 60 targets related to major active ingredients were obtained. Forty-two core pathogenic rheumatoid arthritis-related genes were screened from GeneCard and other related databases. The enrichment of the Kyoto Encyclopedia of Genes and Genomes pathway included the vascular endothelial growth factor signaling pathway that proved to be the decisive pathway for rheumatoid arthritis treatment by a high degree value. In vitro experiments confirmed that Angelicae Pubescentis Radix mainly regulated cell proliferation and survival through the vascular endothelial growth factor signaling pathway and showed significant therapeutic effects on rheumatoid arthritis. The prostaglandin endoperoxide synthase 2 gene was associated with rheumatoid arthritis via pathway verification and monitoring of human gene expression levels. CONCLUSIONS: The mechanism of the multi-component, multi-target, and multi-channel treatment of rheumatoid arthritis via Angelicae Pubescentis Radix was explored using network pharmacology and molecular docking technology, providing new thinking and research directions for future rheumatoid arthritis treatment using Angelicae Pubescentis Radix.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation , Vascular Endothelial Growth Factor A , Medicine, Chinese Traditional , Arthritis, Rheumatoid/drug therapy
6.
Front Public Health ; 10: 978322, 2022.
Article in English | MEDLINE | ID: mdl-36111194

ABSTRACT

Background: Violence against health professionals is a global public health problem. In 2019, a doctor was killed in Civil Aviation General Hospital (CAGH), which triggered national discussion about hospital violence. Sina Weibo, the Chinese version of Twitter, played an important role in this public discussion. The CAGH incident provides us with an opportunity to explore how social media was used in the discussion on violence against doctors. Methods: Using the built-in search engine of Sina Weibo, a data set containing 542 Chinese micro-blogs was established. Three keywords: Civil Aviation General Hospital, doctor, and knife were used to search for related posts between December 24th, 2019 and January 19th, 2020. We made a content analysis of the posts to investigate: Weibo users' demographics, views about the incident of CAGH, and measures to prevent hospital violence. Results: Overall, 89.3% of the posts were sent by individual Weibo users, and 10.7% by organizations. Among the individual users, doctors accounted for 27.4%, but only 1.0% came from the legal profession. In addition, 86.7% of the micro-blogs expressed sympathy for the attacked doctor, and 23.1% of the micro-blogs thought that the imperfect medical system was the main cause of the accident. Nearly half of the posts described their disappointment with the government and the society, and 58.6% of medical staff users expressed regret for engaging in medical work. Only 14.2% of micro-blogs put forward some constructive strategies to prevent hospital violence. Conclusion: Weibo users played an important role in spreading and discussing the CAGH incident. However, constructive measures to protect doctors were rarely mentioned, and legal opinions were not reflected in time. Hospital violence has caused public dissatisfaction with the government and weakened the professional confidence of medical staff. Occupational health and public health stakeholders must take effective measures to solve workplace violence against doctors.


Subject(s)
Aviation , Physicians , Workplace Violence , China , Hospitals, General , Humans
7.
J Med Chem ; 65(19): 12979-13000, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36112701

ABSTRACT

Lysine-specific demethylase 5B (KDM5B) has been recognized as a potential drug target for cardiovascular diseases. In this work, we first found that the KDM5B level was increased in mouse hearts after transverse aortic constriction (TAC) and in Ang II-induced activated cardiac fibroblasts. Structure-based design and further optimizations led to the discovery of highly potent pyrazole-based KDM5B inhibitor TK-129 (IC50 = 0.044 µM). TK-129 reduced Ang II-induced activation of cardiac fibroblasts in vitro, exhibited good PK profile (F = 42.37%), and reduced isoprenaline-induced myocardial remodeling and fibrosis in vivo. Mechanistically, we found that KDM5B up-regulation in cardiac fibroblast activation was associated with the activation of Wnt-related pathway. The protective effects of TK-129 were associated with its KDM5B inhibition and blocking KDM5B-related Wnt pathway activation. Taken together, TK-129 may represent a novel KDM5-targeting lead compound for cardiac remodeling and fibrosis.


Subject(s)
Lysine , Myocardium , Animals , DNA-Binding Proteins/metabolism , Fibrosis , Isoproterenol , Jumonji Domain-Containing Histone Demethylases/metabolism , Lysine/metabolism , Mice , Myocardium/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
8.
Zhongguo Zhong Yao Za Zhi ; 47(18): 5008-5021, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164911

ABSTRACT

The present study explored the main active ingredients and the underlying mechanism of Linderae Radix the treatment of gastric cancer by network pharmacology, molecular docking, and in vitro cell experiments. TCMSP, OMIM and GeneCards database were used to obtain the active ingredients of Linderae Radix to predict the related targets of both Linderae Radix and gastric cancer. After screening the common potential action targets, the STRING database was used to construct the PPI network for protein interaction of the two common targets. Enrichment analysis of GO and KEGG by DAVID database. Based on STRING and DAVID platform data, Cytoscape software was used to construct an "active ingredient-target" network and an "active ingredient-target-pathway" network. Molecular docking was performed using the AutoDock Vina to predict the binding of the active components to the key action targets, and finally the key targets and pathways were verified in vitro. According to the prediction results, there were 9 active components, 179 related targets of Radix Linderae, 107 common targets of Linderae Radix and gastric cancer, 693 biological processes, 57 cell compositions, and 129 molecular functions involved in the targets, and 161 signaling pathways involved in tumor antigen p53, hypoxia-indu-cible factor 1, etc. Molecular docking results showed that the core component, jimadone, had high binding activity with TP53. Finally, in an in vitro experiment, the screened radix linderae active ingredient gemmadone is used for preliminarily verifying the core targets and pathways of the human gastric cancer cell SGC-7901, The results showed that germacrone could significantly inhibit the proliferation of gastric cancer cells and induce the apoptosis of SGC-7901 by regulating the expression of p53, Bax, Bcl-2 and other key proteins. In summary, Radix Linderae can control the occurrence and development of gastric cancer through multi-components, multi-targets and multi-pathways, which will provide theoretical basis for further clinical discussion on the mechanism of Radix Linderae in treating gastric cancer.


Subject(s)
Drugs, Chinese Herbal , Lindera , Medicine, Chinese Traditional , Network Pharmacology , Stomach Neoplasms , Antigens, Neoplasm , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Lindera/chemistry , Molecular Docking Simulation , Stomach Neoplasms/drug therapy , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein
9.
Bosn J Basic Med Sci ; 22(6): 959-971, 2022 10 23.
Article in English | MEDLINE | ID: mdl-35659238

ABSTRACT

Major depressive disorder (MDD) seriously endangers adolescent mental and physical health. Extracellular vesicles (EVs) are mediators of cellular communication and are involved in many physiological brain processes. Although EV miRNAshave been implicated in adults with major psychiatric disorders, investigation into their effects in adolescent MDDremains scarce. In discovery set, we conducted a genome-wide miRNA sequencing of serum EVs from 9 untreated adolescents with MDD and 8 matched healthy controls (HCs), identifying 32 differentially expressed miRNAs (18 upregulated and 14 downregulated). In the validation set, 8 differentially expressed and highly enriched miRNAs were verified in independent samples using RT-PCR, with 4 (miR-450a-2-3p, miR-3691-5p, miR-556-3p, and miR-2115-3p) of the 8 miRNAs found to be significantly elevated in 34 untreated adolescents with MDD compared with 38 HCs and consistent with the sequencing results. After the Bonferroni correction, we found that three miRNAs (miR-450a-2-3p, miR-556-3p, and miR-2115-3p) were still significantly different. Among them, miR-450a-2-3p showed the most markeddifferential expression and was able to diagnose disease with 67.6% sensitivity and 84.2% specificity. Furthermore, miR-450a-2-3p partially mediated the associations between total childhood trauma, emotional abuse, and physical neglect and adolescent MDD. We also found that the combination of miR-450a-2-3p and emotional abuse could effectively diagnose MDD in adolescents with 82.4% sensitivity and 81.6% specificity. Our data demonstrate the association of serum EV miRNA dysregulation with MDD pathophysiology and, furthermore, show that miRNAs may mediate the relationship between early stress and MDD susceptibility. We also provide a valid integrated model for the diagnosis of adolescent MDD.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Extracellular Vesicles , MicroRNAs , Adolescent , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , MicroRNAs/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534262

ABSTRACT

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Subject(s)
Metals, Heavy , Sagittaria , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Liver , Male , Metals, Heavy/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/pharmacology , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Sagittaria/genetics , Sagittaria/metabolism
11.
Am J Kidney Dis ; 80(5): 638-647.e1, 2022 11.
Article in English | MEDLINE | ID: mdl-35469967

ABSTRACT

RATIONALE & OBJECTIVE: Increasing evidence has linked ambient fine particulate matter (ie, particulate matter no larger than 2.5 µm [PM2.5]) to chronic kidney disease (CKD), but their association has not been fully elucidated, especially in regions with high levels of PM2.5 pollution. This study aimed to investigate the long-term association of high PM2.5 exposure with incident CKD in mainland China. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: 72,425 participants (age ≥18 years) without CKD were recruited from 121 counties in Hunan Province, China. EXPOSURE: Annual mean PM2.5 concentration at the residence of each participant derived from a long-term, full-coverage, high-resolution (1 × 1 km2), high-quality dataset of ground-level air pollutants in China. OUTCOMES: Incident CKD during the interval between the baseline examination of each participant (2005-2017) and the end of follow-up through 2018. ANALYTICAL APPROACH: Cox proportional hazards models were used to estimate the independent association of PM2.5 with incident CKD and the joint association of PM2.5 with temperature or humidity on the development of PM2.5-related CKD. Restricted cubic splines were used to model exposure-response relationships. RESULTS: Over a median follow-up of 3.79 (IQR, 2.03-5.48) years, a total of 2,188 participants with incident CKD were identified. PM2.5 exposure was associated with incident CKD with an adjusted hazard ratio of 1.71 (95% CI, 1.58-1.85) per 10-µg/m3 greater long-term exposure. Multiplicative interactions between PM2.5 and humidity or temperature on incident CKD were detected (all P < 0.001 for interaction), whereas an additive interaction was detected only for humidity (relative risk due to interaction, 3.59 [95% CI, 0.97-6.21]). LIMITATIONS: Lack of information on participants' activity patterns such as time spent outdoors. CONCLUSIONS: Greater long-term ambient PM2.5 pollution is associated with incident CKD in environments with high PM2.5 exposure. Ambient humidity has a potentially synergetic effect on the association of PM2.5 with the development of CKD. PLAIN-LANGUAGE SUMMARY: Exposure to a form of air pollution known as fine particulate matter (ie, particulate matter ≤2.5 µm [PM2.5]) has been linked to an increased risk of chronic kidney disease (CKD), but little is known about how PM2.5 affects CKD in regions with extremely high levels of PM2.5 pollution. This longitudinal cohort study in China investigates the effect of PM2.5 on the incidence of CKD and whether temperature or humidity interact with PM2.5. Our findings suggest that long-term exposure to high levels of ambient PM2.5 significantly increased the risk of CKD in mainland China, especially in terms of cumulative average PM2.5. The associations of PM2.5 and incident CKD were greater in high-humidity environments. These findings support the recommendation that reducing PM2.5 pollution should be a priority to decrease the burden of associated health risks, including CKD.


Subject(s)
Air Pollutants , Renal Insufficiency, Chronic , Humans , Adolescent , Particulate Matter/adverse effects , Prospective Studies , Longitudinal Studies , Environmental Exposure/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Cohort Studies , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , China/epidemiology
12.
J Inorg Biochem ; 232: 111810, 2022 07.
Article in English | MEDLINE | ID: mdl-35367820

ABSTRACT

The hepatic protective role of Sagittaria sagittifolia polysaccharide (SSP) and its possible mechanism were discussed in mice and L02 hepatocytes injured by heavy metals mixture of Cd + Cr (VI) + Pb + Mn + Zn + Cu. After 30-day intervention, blood and liver samples were collected for the relevant assessments. Methyl thiazolyl tetrazolium (MTT) assay showed 24 h was the best protecting point and the SSP protection at 1 mg/mL was strongest in L02 hepatocytes. SSP can alleviated hepatic injury, as evidenced by significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the malondialdehyde (MDA) content, also increased the superoxide dismutase (SOD) activity and glutathione (GSH), total sulphydryl (T-SH) contents. SSP effectively reduced pathological damage of mice and accumulation of heavy metals in liver, as well as decreased the level of reactive oxygen species (ROS) in L02 hepatocytes. After SSP treatment, the protein expressions or gene transcription of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 (NQO1) and heme oxygenase1 (HO-1) decreased in L02. The protein expression of Nrf2 and NQO1 were increased while HO-1 was decreased in liver. Besides, SSP can attenuates apoptosis through reducing the protein expression of Bcl-2-associated X protein (Bax) and caspase-3, and increasing B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl). SSP protects against six-heavy-metal-induced hepatic injury in mice and L02 hepatocytes. Supported by Nrf2 gene silencing, the mechanisms may correlate with activating Nrf2 pathway to mitigate oxidative stress and apoptosis.


Subject(s)
Lymphoma, B-Cell , Metals, Heavy , Sagittaria , Apoptosis , Glutathione/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Liver/metabolism , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/metabolism , Polysaccharides/pharmacology , Sagittaria/metabolism , Signal Transduction
13.
Animals (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35158649

ABSTRACT

As the global climate warms, more creatures are threatened by high temperatures, especially cold-water fish such as rainbow trout. Evidence has demonstrated that long noncoding RNAs (lncRNAs) play a pivotal role in regulating heat stress in animals, but we have little understanding of this regulatory mechanism. The present study aimed to identify potential key lncRNAs involved in regulating acute heat stress in rainbow trout. lncRNA and mRNA expression profiles of rainbow trout head kidney were analyzed via high-throughput RNA sequencing, which exhibited that 1256 lncRNAs (802 up-regulation, 454 down-regulation) and 604 mRNAs (353 up-regulation, 251 down-regulation) were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with immune regulation, apoptosis, and metabolic process signaling pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and coding-noncoding co-expression network analysis. These results suggested that 18 key lncRNA-mRNA pairs are essential in regulating acute heat stress in rainbow trout. Overall, these analyses showed the effects of heat stress on various physiological functions in rainbow trout at the transcriptome level, providing a theoretical basis for improving the production and breeding of rainbow trout and the selection of new heat-resistant varieties.

14.
Mol Cell Biochem ; 476(4): 1751-1763, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33433832

ABSTRACT

Treatment of bone cancer pain (BCP) caused by bone metastasis in advanced cancers remains a challenge in clinical oncology, and the underlying mechanisms of BCP are poorly understood. This study aimed to investigate the pathogenic roles of circular RNAs (circRNAs) in regulating cancer cell proliferation and BCP development. Eight differentially expressed circRNAs in the rat spinal cord were validated by agarose gel electrophoresis and Sanger sequencing. Expression of circRNAs and mRNAs was detected by quantitative RT-PCR. MTS assay and flow cytometry were performed to analyze cell proliferation and apoptosis, respectively. Differentially expressed mRNA profiles were characterized by deep RNA sequencing, hierarchical clustering, and functional categorization. The interactions among circRNAs, microRNAs (miRNAs), and mRNAs were predicted using TargetScan. Additionally, western blot was performed to determine the protein levels of Pax8, Isg15, and Cxcl10. Multiple circRNAs were differentially expressed in the spinal cords of BCP model rats; of these, circSlc7a11 showed the greatest increase in expression. The overexpression of circSlc7a11 significantly promoted cell proliferation and repressed apoptosis of LLC-WRC 256 and UMR-106 cells, whereas circSlc7a11 silencing produced the opposite effects. Altered expression of circSlc7a11 also induced substantial changes in the mRNA expression profiles of LLC-WRC 256 cells; these changes were linked to multiple apoptotic processes and signaling pathways, such as the chemokine signaling pathway, and formed a complex circRNA/miRNA/mRNA network. Additionally, Pax8, Isg15, and Cxc110 protein level in LLC-WRC 256 cells was consistent with the mRNA results. The circRNA circSlc7a11 regulates rat BCP development by modulating LLC-WRC 256 cell proliferation and apoptosis through multiple-signaling mechanisms.


Subject(s)
Apoptosis , Bone Neoplasms/metabolism , Cell Proliferation , RNA, Circular/metabolism , RNA, Neoplasm/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , RNA, Circular/genetics , RNA, Neoplasm/genetics , Rats
15.
J Integr Med ; 19(2): 158-166, 2021 03.
Article in English | MEDLINE | ID: mdl-33308987

ABSTRACT

OBJECTIVE: This study tests whether long-term intake of Allium tuberosum (AT) can alleviate pulmonary inflammation in ovalbumin (OVA)-induced asthmatic mice and evaluates its effect on the intestinal microbiota and innate lymphoid cells (ILCs). METHODS: BALB/c mice were divided into three groups: phosphate buffer saline, OVA and OVA + AT. The asthmatic murine model was established by sensitization and challenge of OVA in the OVA and OVA + AT groups. AT was given to the OVA + AT group by oral gavage from day 0 to day 27. On day 28, mice were sacrificed. Histopathological evaluation of lung tissue was performed using hematoxylin and eosin, and periodic acid-Schiff staining. The levels of IgE in serum, interleukin-5 (IL-5) and IL-13 from bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The ILCs from the lung and gut were detected by flow cytometry. 16S ribosomal DNA sequencing was used to analyze the differences in colon microbiota among treatment groups. RESULTS: We found that long-term intake of AT decreased the number of inflammatory cells from BALF, reduced the levels of IL-5 and IL-13 in BALF, and IgE level in serum, and rescued pulmonary histopathology with less mucus secretion in asthmatic mice. 16S ribosomal DNA sequencing results showed that AT strongly affected the colonic bacteria community structure in asthmatic mice, although it had no significant effect on the abundance and diversity of the microbiota. Ruminococcaceae and Desulfovibrionaceae were identified as two biomarkers of the treatment effect of AT. Moreover, AT decreased the numbers of ILCs in both the lung and gut of asthmatic mice. CONCLUSION: The results indicate that AT inhibits pulmonary inflammation, possibly by impeding the activation of ILCs and adjusting the homeostasis of gut microbiota in asthmatic mice.


Subject(s)
Chive , Gastrointestinal Microbiome , Pneumonia , Animals , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Immunity, Innate , Inflammation/drug therapy , Lung , Lymphocytes , Mice , Mice, Inbred BALB C , Pneumonia/drug therapy
16.
J Asthma Allergy ; 13: 509-520, 2020.
Article in English | MEDLINE | ID: mdl-33116659

ABSTRACT

OBJECTIVE: In China, lamb and fish are well-known triggers for an asthma attack. Our investigation aims at assessing whether the long-term intake of lamb meat or Basa fish would aggravate pulmonary inflammation as well as exploring changes in the intestinal microbiota and immune cells in asthmatic mice. MATERIALS AND METHODS: The murine asthmatic model was established by intraperitoneal injection of ovalbumin (OVA) plus aluminum on day 0 and 14 and nebulization of OVA from day 21 to 27. Lamb meat or fish was administered to asthmatic mice by oral gavage from day 0 to 27. RESULTS: Our results showed that long-term consumption of lamb meat or Basa fish in asthmatic mice increased the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), enhanced levels of IL-5, IL-13 in BALF and total IgE in serum, aggravated pulmonary inflammatory cell infiltration and mucus secretion. Long-term oral lamb enhanced the proportion of type 2 innate lymphoid cells (ILC2) from small intestine while it inhibited that of Treg from lung in asthmatic mice. Oral fish showed no remarkable effect on that of ILC2 from lung and small intestine but inhibited that of intestinal Treg in asthmatic mice. What's more, the chao-1 and observed species richness as well as PD whole tree diversity increased in asthmatic mice while these increments were inhibited after lamb treatment. PCA analysis indicated that there were significant differences in the bacterial community composition after lamb or fish treatment in asthmatic mice. Both lamb and fish treatment enhanced the abundance of colonic Alistipes in asthmatic mice. CONCLUSION: Collectively, long-term intake of lamb or fish shapes colonic bacterial communities and aggravates pulmonary inflammation in asthmatic mice, which provides reasonable food guidance for asthmatic patients.

17.
Org Biomol Chem ; 18(40): 8141-8146, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33016295

ABSTRACT

A simple and efficient synthetic protocol for the preparation of acridinium esters and amides through the cyclization and esterification or amidation of isatins with alcohols or amines as nucleophiles in the presence of CF3SO3H is established. A series of polycyclic acridine derivatives bearing large π-conjugated systems were obtained in high yields, including some key intermediates for the synthesis of biologically active molecules. The photophysical properties of these synthesized acridines were investigated, demonstrating that the sulfur heterocyclic acridine 9w was obtained in a high quantum yield.

18.
Ann Transl Med ; 8(10): 635, 2020 May.
Article in English | MEDLINE | ID: mdl-32566572

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide from Wuhan. An easy-to-use index capable of the early identification of inpatients who are at risk of becoming critically ill is urgently needed in clinical practice. Hence, the aim of this study was to explore an easy-to-use nomogram and a model to triage patients into risk categories to determine the likelihood of developing a critical illness. METHODS: A retrospective cohort study was conducted. We extracted data from 84 patients with laboratory-confirmed COVID-19 from one designated hospital. The primary endpoint was the development of severe/critical illness within 7 days after admission. Predictive factors of this endpoint were selected by LASSO Cox regression model. A nomogram was developed based on selected variables. The predictive performance of the derived nomogram was evaluated by calibration curves and decision curves. Additionally, the predictive performances of individual and combined variables under study were evaluated by receiver operating characteristic curves. The developed model was also tested in a separate validation set with 71 laboratory-confirmed COVID-19 patients. RESULTS: None of the 84 inpatients were lost to follow-up in this retrospective study. The primary endpoint occurred in 23 inpatients (27.4%). The neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) were selected as the final prognostic factors. A nomogram was developed based on the NLR and CRP. The calibration curve and decision curve indicated that the constructed nomogram model was clinically useful. The AUCs for the NLR, CRP and Combined Index in both training set and validation sets were 0.685 (95% CI: 0.574-0.783), 0.764 (95% CI: 0.659-0.850), 0.804 (95% CI: 0.702-0.883), and 0.881 (95% CI: 0.782-0.946), respectively. CONCLUSIONS: Our results demonstrated that the nomogram and Combined Index calculated from the NLR and CRP are potential and reliable predictors of COVID-19 prognosis and can triage patients at the time of admission.

19.
Parasitol Res ; 118(7): 2247-2255, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31081529

ABSTRACT

In a previous study, immunoproteomics was used to identify a serine protease inhibitor (TsSPI) of T. spiralis excretory/secretory (ES) proteins that exhibited an inhibitory effect on trypsin enzymatic activity, but the precise role of TsSPI on worm infection and development in its host is not well understood. The objective of the present study was to use RNA interference to ascertain the function of TsSPI in larval invasion and growth. TsSPI-specific small interference RNAs (siRNAs) were delivered to muscle larvae (ML) to silence TsSPI expression by electroporation. Four days after electroporation, the ML transfected with 2 µM siRNA-653 exhibited a 75.75% decrease in TsSPI transcription and a 69.23% decrease in TsSPI expression compared with control ML. Although the silencing of TsSPI expression did not decrease worm viability, it significantly suppressed the larval invasion of intestinal epithelium cells (IEC) (P < 0.01), and the suppression was siRNA dose-dependent (r = 0.981). The infection of mice with siRNA-653-treated ML produced a 63.71% reduction of adult worms and a 72.38% reduction of muscle larvae. In addition, the length of the adults, newborn larvae, and ML and the fecundity of female T. spiralis from mice infected with siRNA-treated ML were obviously reduced relative to those in the control siRNA or PBS groups. These results indicated that the silencing of TsSPI by RNAi suppressed larval invasion and development and decreased female fecundity, further confirming that TsSPI plays a crucial role during the T. spiralis lifecycle and is a promising molecular target for anti-Trichinella vaccines.


Subject(s)
Foodborne Diseases/prevention & control , RNA, Small Interfering/administration & dosage , Serine Proteinase Inhibitors/genetics , Trichinella spiralis/genetics , Trichinellosis/prevention & control , Animals , Female , Fertility , Foodborne Diseases/immunology , Foodborne Diseases/parasitology , Humans , Intestinal Mucosa/immunology , Larva , Mice , Mice, Inbred BALB C , Muscles/parasitology , Proteomics , RNA Interference , Serine Proteinase Inhibitors/metabolism , Trichinella spiralis/growth & development , Trichinella spiralis/immunology , Trichinella spiralis/pathogenicity , Trichinellosis/immunology , Trichinellosis/parasitology
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(4): 460-465, 2018 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-29735448

ABSTRACT

OBJECTIVE: To assess the effect of long-term high-fat diet on the expressions of insulin receptor substrates in the hippocampus and spatial learning and memory ability of obese rats. METHODS: A total of 100 4-week-old male SD rats were randomly divided into two groups and fed with common diet (CD group, n=40) or high-fat diet (HFD group, n=60) for 16 weeks. At 4, 8, 12, 16 and 20 weeks, 8 rats were randomly selected from each group for testing their spatial learning and memory function using Morris water maze. After the tests, the rats were sacrificed for measurement of the metabolic parameters and detection of the expressions of insulin receptor substrate-1 (IRS-1) and IRS-2 mRNAs in the CA1 region of the hippocampus. RESULTS: Compared with those in CD group, the rats in HFD group showed a prolonged escape latency, longer swimming distance, faster average swimming speed, and shorter stay in the platformat 12 weeks. In HFD group, the serum levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and fasting insulin were all significantly increased (P<0.05) and the level of high-density lipoprotein cholesterol decreased (P<0.01) in comparison with those in CD group at each of the time points. No significant difference was found in fast glucose levels between the two groups (P>0.05), but the expressions of IRS-1 and IRS-2 mRNAs were significantly decreased in HFD group at 12 weeks (P<0.05). CONCLUSION: In obese rats, long-term feeding with high-fat diet leads to insulin resistance, which interferes with hippocampal expression of insulin receptor substrates and insulin metabolism to cause impairment of the cognitive function and accelerate cognitive deterioration.


Subject(s)
CA1 Region, Hippocampal/metabolism , Cognitive Dysfunction , Diet, High-Fat/adverse effects , Insulin Receptor Substrate Proteins/metabolism , Obesity/physiopathology , Animals , Cognition , Insulin/blood , Insulin Resistance , Lipids/blood , Male , Maze Learning , Memory , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...