Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(3): 763-775, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336881

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in vitro. The activated MraY variants have substitutions that map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural and molecular dynamics results suggest that this cavity is a binding site for externalized lipid II. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism that prevents the sequestration of lipid carrier in the PG biogenesis pathway.


Subject(s)
Bacteria , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Feedback , Cell Wall/metabolism , Lipids
2.
J Biol Chem ; 299(11): 105314, 2023 11.
Article in English | MEDLINE | ID: mdl-37797696

ABSTRACT

Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.


Subject(s)
Alginates , Pseudomonas aeruginosa , Acetylation , Alginates/chemistry , Bacterial Proteins/metabolism , Biofilms , Periplasm/metabolism , Protein Processing, Post-Translational , Pseudomonas aeruginosa/metabolism
3.
bioRxiv ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37577621

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.

4.
Science ; 381(6654): eadg9091, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37440661

ABSTRACT

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Subject(s)
Anti-Bacterial Agents , Bacteriolysis , Bacteriophage phi X 174 , Escherichia coli Proteins , Escherichia coli , Viral Proteins , Anti-Bacterial Agents/metabolism , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/metabolism , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Peptidylprolyl Isomerase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Single Molecule Imaging , Cryoelectron Microscopy
5.
Nat Commun ; 13(1): 7631, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494359

ABSTRACT

Synthase-dependent secretion systems are a conserved mechanism for producing exopolysaccharides in Gram-negative bacteria. Although widely studied, it is not well understood how these systems are organized to coordinate polymer biosynthesis, modification, and export across both membranes and the peptidoglycan. To investigate how synthase-dependent secretion systems produce polymer at a molecular level, we determined the crystal structure of the AlgK-AlgX (AlgKX) complex involved in Pseudomonas aeruginosa alginate exopolysaccharide acetylation and export. We demonstrate that AlgKX directly binds alginate oligosaccharides and that formation of the complex is vital for polymer production and biofilm attachment. Finally, we propose a structural model for the AlgEKX outer membrane modification and secretion complex. Together, our study provides insight into how alginate biosynthesis proteins coordinate production of a key exopolysaccharide involved in establishing persistent Pseudomonas lung infections.


Subject(s)
Alginates , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Alginates/metabolism , Hexuronic Acids/metabolism , Bacterial Proteins/metabolism , Glucuronic Acid/metabolism , Biofilms , Polymers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...