Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787793

ABSTRACT

N6-Adenosine methylation (m6A) is a prevalent post-transcriptional modification of mRNA, with YTHDC1 being the reader protein responsible for recognizing this modification in the cell nucleus. Here, we present a protein structure-based medicinal chemistry campaign that resulted in the YTHDC1 inhibitor 40, which shows an equilibrium dissociation constant (Kd) of 49 nM. The crystal structure of the complex (1.6 Å resolution) validated the design. Compound 40 is selective against the cytoplasmic m6A-RNA readers YTHDF1-3 and YTHDC2 and shows antiproliferative activity against the acute myeloid leukemia (AML) cell lines THP-1, MOLM-13, and NOMO-1. For the series of compounds that culminated into ligand 40, the good correlation between the affinity in the biochemical assay and antiproliferative activity in the THP-1 cell line provides evidence of YTHDC1 target engagement in the cell. The binding to YTHDC1 in the cell is further supported by the cellular thermal shift assay. Thus, ligand 40 is a tool compound for studying the role of YTHDC1 in AML.

2.
Elife ; 122024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470714

ABSTRACT

The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.


Subject(s)
Methyltransferases , RNA , Humans , RNA/metabolism , Methyltransferases/metabolism , Adenosine/metabolism , S-Adenosylmethionine , Catalysis
3.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37732228

ABSTRACT

The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.

4.
ACS Bio Med Chem Au ; 3(4): 359-370, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37599794

ABSTRACT

Methyltransferase-like 3 (METTL3) and METTL14 form a heterodimeric complex that catalyzes the most abundant internal mRNA modification, N6-methyladenosine (m6A). METTL3 is the catalytic subunit that binds the co-substrate S-adenosyl methionine (SAM), while METTL14 is involved in mRNA binding. The m6A modification provides post-transcriptional level control over gene expression as it affects almost all stages of the mRNA life cycle, including splicing, nuclear export, translation, and decay. There is increasing evidence for an oncogenic role of METTL3 in acute myeloid leukemia. Here, we use structural and dynamic details of the catalytic subunit METTL3 for developing small-molecule inhibitors that compete with SAM. Starting from a hit identified by high-throughput docking, protein crystallography and molecular dynamics simulations were employed to guide the optimization of inhibitory activity. The potency was successfully improved by 8000-fold as measured by a homogeneous time-resolved fluorescence assay. The optimized compound is selective against the off-targets RNA methyltransferases METTL1 and METTL16.

5.
Langmuir ; 39(20): 6947-6956, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37172292

ABSTRACT

Poly(ε-caprolactone) (PCL)-incorporated lignin-chitosan biomass-based nanocomposite porous scaffolds have been effectively prepared by templating oil-in-water Pickering high internal phase emulsions (HIPEs). PCL is dissolved in oil and chitosan and lignin nanoparticles originate in water. The continuous phase of the emulsions is gelled by cross-linking of chitosan with genipin and then freeze-dried to obtain porous scaffolds. The resulting scaffolds display interconnected and tunable pore structures. An increase in PCL content increases the mechanical strength and greatly reduces the water absorption capacity of the scaffolds. Scaffolds loaded with the anti-bacterial drug enrofloxacin show a slow drug release profile, adjustable release rate, and favorable long-term anti-bacterial activity. Moreover, Pickering emulsion templates with suitable viscosity are used as 3D printing inks to construct porous scaffolds with personalized geometry. The results imply that the simplicity and versatility of the technique of combining freeze-drying with Pickering HIPE templates is a promising approach to fabricate hydrophobic biopolymer-incorporated biomass-based nanocomposite porous scaffolds for biomedical applications.

6.
Adv Mater ; 35(24): e2301596, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37037047

ABSTRACT

Facing the global water shortage challenge, solar-driven desalination is considered a sustainable technology to obtain freshwater from seawater. However, the trade-off between the salt cycle and heat localization of existing solar evaporators (SE) hinders its further practical applications. Here, inspired by water hyacinth, a self-standing and self-floating 3D SE with adiabatic foam particles and aligned water channels is built through a continuous directional freeze-casting technique. With the help of the heat insulation effect of foam particles and the efficient water transport of aligned water channels, this new SE can cut off the heat transfer from the top photothermal area to the bulk water without affecting the water supply, breaking the long-standing trade-off between salt cycle and heat localization of traditional SEs. Additionally, its self-standing and self-floating features can reduce human maintenance. Its large exposure height can increase evaporation area and collect environmental energy, breaking the long-standing limitation of solar-to-vapor efficiency of conventional SEs. With the novel structure employed, an evaporation flux of 2.25 kg m-2 h-1 , and apparent solar-to-vapor efficiency of 136.7% are achieved under 1 sun illumination. This work demonstrates a new evaporator structure, and also provides a key insight into the structural design of next-generation salt-tolerant and high-efficiency SEs.

7.
Int J Biol Macromol ; 226: 780-792, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36521705

ABSTRACT

Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/genetics , Molecular Dynamics Simulation , Protein Binding
8.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558060

ABSTRACT

High-hardness thermoplastic polyurethane (HD-TPU) presents a high matrix modulus, low-temperature durability, and remarkable abrasion resistance, and has been used in many advanced applications. However, the fabrication of microcellular HD-TPU foam is rarely reported in the literature. In this study, the foaming behavior of HD-TPU with a hardness of 75D was investigated via a pressure-quenching foaming process using CO2 as a blowing agent. Microcellular HD-TPU foam with a maximum expansion ratio of 3.9-fold, a cell size of 25.9 µm, and cell density of 7.8 × 108 cells/cm3 was prepared, where a high optimum foaming temperature of about 170 °C had to be applied with the aim of softening the polymer's matrix modulus. However, the foaming behavior of HD-TPU deteriorated when the foaming temperature further increased to 180 °C, characterized by the presence of coalesced cells, microcracks, and a high foam density of 1.0 g/cm3 even though the crystal domains still existed within the matrix. The cell morphology evolution of HD-TPU foam was investigated by adjusting the saturation time, and an obvious degradation occurred during the high-temperature saturation process. A cell growth mechanism of HD-TPU foams in degradation environments was proposed to explain this phenomenon based on the gas escape through the defective matrix.


Subject(s)
Hot Temperature , Polyurethanes , Hardness , Polyurethanes/chemistry , Temperature
9.
ACS Med Chem Lett ; 13(9): 1500-1509, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36110386

ABSTRACT

We report 17 small-molecule ligands that compete with N6-methyladenosine (m6A) for binding to the m6A-reader domain of YTHDF2 (YT521-B homology domain family 2). We determined their binding mode at high resolution by X-ray crystallography and quantified their affinity by a fluorescence-based binding assay. 6-Cyclopropyluracil and a pyrazolopyrimidine derivative have favorable ligand efficiencies of 0.47 and 0.38 kcal mol-1 per non-hydrogen atom, respectively. They represent useful starting points for hit optimization.

10.
Colloid Polym Sci ; 300(10): 1187-1195, 2022.
Article in English | MEDLINE | ID: mdl-36090674

ABSTRACT

Cinnamon essential oil (CNO) is a natural and renewable antibacterial agent. However, CNO is highly volatile and unstable, which limits its practical application as a long-term and wide antibacterial agent. In order to improve the CNO stability, we have microencapsulated CNO into composite microcapsules basing on Pickering emulsion stabilized by silica (SiO2) nanoparticles. The CNO-loaded composite microcapsules possess the hybrid microcapsule shell including SiO2, xanthan gum and chitosan. Moreover, the results show that the microcapsules have spherical appearance. Microencapsulation technique effectively promotes the CNO stability, and the loaded CNO is slowly released from microcapsules. The antibacterial test indicates that the minimal inhibitory concentration of microcapsules was 2 mg mL-1 against Escherichia coli and Staphylococcus aureus, and the microcapsules can play an effective long-term antibacterial effect. Thus, Pickering emulsion templates is a convenient and effective technique to construct antibacterial essential oil-contained microcapsules, which can be used as long-term antibacterial agents.

11.
ChemMedChem ; 16(19): 3035-3043, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34237194

ABSTRACT

The methylase METTL3 is the writer enzyme of the N6 -methyladenosine (m6 A) modification of RNA. Using a structure-based drug discovery approach, we identified a METTL3 inhibitor with potency in a biochemical assay of 280 nM, while its enantiomer is 100 times less active. We observed a dose-dependent reduction in the m6 A methylation level of mRNA in several cell lines treated with the inhibitor already after 16 h of treatment, which lasted for at least 6 days. Importantly, the prolonged incubation (up to 6 days) with the METTL3 inhibitor did not alter levels of other RNA modifications (i. e., m1 A, m6 Am , m7 G), suggesting selectivity of the developed compound towards other RNA methyltransferases.


Subject(s)
Enzyme Inhibitors/pharmacology , Methyltransferases/antagonists & inhibitors , RNA, Small Interfering/pharmacology , Caco-2 Cells , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Methyltransferases/metabolism , Molecular Structure , RNA, Small Interfering/chemistry , Structure-Activity Relationship
12.
Biochem Biophys Res Commun ; 541: 1-7, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33450580

ABSTRACT

BACKGROUND: Chronic hypoxia plays an important role in the initiation and progression of chronic renal disease. The pathogenic role of chronic hypoxia in tubulointerstitial injury has been investigated widely, but little is known about acute hypoxia implications in glomerular damage. In this study, we investigated the effect of chronic hypoxia on transient receptor potential cation channel 6 (TRPC6) and the underlying mechanism in cultured human podocytes. METHODS: Fluo-3 was used as a calcium indicator of the OAG-induced receptor operated calcium entry (ROCE) and basal [Ca2+]i levels were monitored using laser scanning confocal microscope after exposure of cells to chronic hypoxia. 2-aminoethoxydiphenylborane (2-APB), a pharmacological blocker of TRPCs channels, was used to determine the role of TRPC6 in podocytes under chronic hypoxia. The mRNA expression and protein levels of TRPC6 were determined using Real-time RT-PCR and Western Blotting under normoxic and chronic hypoxic conditions. Actin arrangement was analyzed by confocal microscopy using phalloidin staining of F-actin in podocytes. RESULTS: Cytosolic free Ca2+ was increased by hypoxia or the treatment of TRPC6 agonist OAG under normoxic conditions. The increase of intracellular Ca2+ induced by hypoxia was time- and dose-dependent, which can be inhibited by 2-APB, demonstrating that the changes of intracellular Ca2+ induced by OAG depend on the activation of TRPC6. Further study showed that the TRPC6 expression levels were significantly increased by hypoxia, which were inhibited by the HIF1α inhibitor in podocytes. Similarly, the increase of intracellular Ca2+ induced by hypoxia was decreased when the podocytes were incubated with HIF1α inhibitor. We also found that F-actin was ruptured by hypoxia in podocytes, showing cytoskeleton reorganization. CONCLUSIONS: TRPC6 mRNA and protein expression levels were significantly increased in podocytes under hypoxia, which may result in the increase of intracellular Ca2+. This alternation of TRPC6 may be relevant to the modulation of HIF1α. Hypoxia in podocytes can result in cytoskeleton reorganization, which further leads to podocytes injury and disfunction.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Podocytes/metabolism , Podocytes/pathology , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , Actins/metabolism , Boron Compounds/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line , Cytoskeleton/metabolism , Diglycerides/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Oxygen/metabolism , Oxygen/pharmacology , Podocytes/drug effects , RNA, Messenger/analysis , RNA, Messenger/genetics , Time Factors
13.
J Chem Theory Comput ; 17(2): 1240-1249, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33472367

ABSTRACT

N6-Methyladenosine (m6A) is the most frequent modification in eukaryotic messenger RNA (mRNA) and its cellular processing and functions are regulated by the reader proteins YTHDCs and YTHDFs. However, the mechanism of m6A recognition by the reader proteins is still elusive. Here, we investigate this recognition process by combining atomistic simulations, site-directed mutagenesis, and biophysical experiments using YTHDC1 as a model. We find that the N6 methyl group of m6A contributes to the binding through its specific interactions with an aromatic cage (formed by Trp377 and Trp428) and also by favoring the association-prone conformation of m6A-containing RNA in solution. The m6A binding site dynamically equilibrates between multiple metastable conformations with four residues being involved in the regulation of m6A binding (Trp428, Met438, Ser378, and Thr379). Trp428 switches between two conformational states to build and dismantle the aromatic cage. Interestingly, mutating Met438 and Ser378 to alanine does not alter m6A binding to the protein but significantly redistributes the binding enthalpy and entropy terms, i.e., enthalpy-entropy compensation. Such compensation is reasoned by different entropy-enthalpy transduction associated with both conformational changes of the wild-type and mutant proteins and the redistribution of water molecules. In contrast, the point mutant Thr379Val significantly changes the thermal stability and binding capability of YTHDC1 to its natural ligand. Additionally, thermodynamic analysis and free energy calculations shed light on the role of a structural water molecule that synergistically binds to YTHDC1 with m6A and acts as the hub of a hydrogen-bond network. Taken together, the experimental data and simulation results may accelerate the discovery of chemical probes, m6A-editing tools, and drug candidates against reader proteins.


Subject(s)
Adenosine/analogs & derivatives , Nerve Tissue Proteins/chemistry , RNA Splicing Factors/chemistry , Thermodynamics , Adenosine/chemistry , Calorimetry/methods , Crystallography, X-Ray , Methylation , Molecular Conformation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Water/chemistry
14.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357446

ABSTRACT

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Subject(s)
Escherichia coli Proteins/metabolism , Imaging, Three-Dimensional , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Allosteric Regulation , Amino Acid Sequence , Escherichia coli/enzymology , Escherichia coli/metabolism , Mass Spectrometry , Molecular Dynamics Simulation , Osmotic Pressure , Phosphorylation , Proteolysis , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Stress, Physiological
15.
J Chem Inf Model ; 60(12): 5932-5935, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33073985

ABSTRACT

Three YTH-domain family proteins (YTHDF1, YTHDF2, and YTHDF3) recognize the N6-methyladenosine (m6A) modification of mRNA in cells. However, the redundancy of their cellular functions has been disputed. We investigate their interactions with m6A-containing RNA using X-ray crystallography and molecular dynamics (MD). The new X-ray structures and MD simulations show that the three proteins share identical interactions with the m6A-containing RNA and have similar intrinsic plasticity, thus evidencing the redundant roles of the three proteins in cellular functions.


Subject(s)
Adenosine , RNA-Binding Proteins , RNA
16.
J Chem Theory Comput ; 16(8): 4776-4789, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32559374

ABSTRACT

In alchemical free energy (FE) simulations, annihilation and creation of atoms are generally achieved with the soft-core potential that shifts the interparticle separations. While this soft-core potential eliminates the numerical instability occurring near the two end states of the transformation, it makes the hybrid Hamiltonian vary nonlinearly with respect to the parameter λ, which interpolates between the Hamiltonians representing the two end states. This complicates FE estimation by Bennett acceptance ratio (BAR), free energy perturbation (FEP), and thermodynamic integration (TI) methods, thus reducing their calculation efficiency. In this work, we develop a new type of repulsive soft-core potential, called Gaussian soft-core (GSC) potential, with two parameters controlling its maximum and width. The main advantage of this potential is the linearity of the hybrid Hamiltonian with respect to λ, thus permitting the direct application of BAR, FEP, TI, and other variant FE methods. The accuracy and efficiency of the GSC potential are demonstrated by comparing the free energies of annihilation determined for 13 small molecules and an alchemical mutation of a protein side chain. In addition, in combination with a TI integrand (∂H/∂λ) estimation strategy, we show that GSC can considerably reduce the number of λ simulations compared to the commonly used separation-shifted soft-core potential.

17.
ACS Chem Biol ; 15(3): 618-625, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32101404

ABSTRACT

We report a crystallographic analysis of small-molecule ligands of the human YTHDC1 domain that recognizes N6-methylated adenine (m6A) in RNA. The 30 binders are fragments (molecular weight < 300 g mol-1) that represent 10 different chemotypes identified by virtual screening. Despite the structural disorder of the binding site loop (residues 429-439), most of the 30 fragments emulate the two main interactions of the -NHCH3 group of m6A. These interactions are the hydrogen bond to the backbone carbonyl of Ser378 and the van der Waals contacts with the tryptophan cage. Different chemical groups are involved in the conserved binding motifs. Some of the fragments show favorable ligand efficiency for YTHDC1 and selectivity against other m6A reader domains. The structural information is useful for the design of modulators of m6A recognition by YTHDC1.


Subject(s)
Nerve Tissue Proteins/chemistry , Peptide Fragments/chemistry , RNA Splicing Factors/chemistry , RNA/chemistry , Amines/chemistry , Amino Acid Sequence , Binding Sites , Crystallization , Hydrogen Bonding , Ligands , Models, Molecular , Protein Binding , Protein Domains , Structure-Activity Relationship
18.
J Chem Theory Comput ; 15(12): 7004-7014, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31670957

ABSTRACT

N6-Methyladenosine (m6A) is the most prevalent chemical modification in human mRNAs. Its recognition by reader proteins enables many cellular functions, including splicing and translation of mRNAs. However, the binding mechanisms of m6A-containing RNAs to their readers are still elusive due to the unclear roles of m6A-flanking ribonucleotides. Here, we use a model system, YTHDC1 with its RNA motif 5'-G-2G-1(m6A)C+1U+2-3', to investigate the binding mechanisms by atomistic simulations, X-ray crystallography, and isothermal titration calorimetry. The experimental data and simulation results show that m6A is captured by an aromatic cage of YTHDC1 and the 3' terminus nucleotides are stabilized by cation-π-π interactions, while the 5' terminus remains flexible. Notably, simulations of unbound RNA motifs reveal that the methyl group of m6A and the 5' terminus shift the conformational preferences of the oligoribonucleotide to the bound-like conformation, thereby facilitating the association process. The binding mechanisms may help in the discovery of chemical probes against m6A reader proteins.


Subject(s)
Nerve Tissue Proteins/chemistry , Nucleotide Motifs , RNA Splicing Factors/chemistry , RNA, Messenger/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Nerve Tissue Proteins/isolation & purification , RNA Splicing Factors/isolation & purification
19.
Biometals ; 32(6): 875-885, 2019 12.
Article in English | MEDLINE | ID: mdl-31598802

ABSTRACT

Wilson disease (WD) is caused by mutations in the gene for ATP7B, a copper transport protein that regulates copper levels in cells. A large number of missense mutations have been reported to cause WD but genotype-phenotype correlations are not yet established. Since genetic screening for WD may become reality in the future, it is important to know how individual mutations affect ATP7B function, with the ultimate goal to predict pathophysiology of the disease. To begin to assess mechanisms of dysfunction, we investigated four proposed WD-causing missense mutations in metal-binding domains 5 and 6 of ATP7B. Three of the four variants showed reduced ATP7B copper transport ability in a traditional yeast assay. To probe mutation-induced structural dynamic effects at the atomic level, molecular dynamics simulations (1.5 µs simulation time for each variant) were employed. Upon comparing individual metal-binding domains with and without mutations, we identified distinct differences in structural dynamics via root-mean square fluctuation and secondary structure content analyses. Most mutations introduced distant effects resulting in increased dynamics in the copper-binding loop. Taken together, mutation-induced long-range alterations in structural dynamics provide a rationale for reduced copper transport ability.


Subject(s)
Adenosine Triphosphatases/genetics , Copper/metabolism , Hepatolenticular Degeneration/genetics , Molecular Dynamics Simulation , Mutation, Missense/genetics , Adenosine Triphosphatases/metabolism , Binding Sites , Copper/chemistry , Hepatolenticular Degeneration/metabolism , Humans , Molecular Structure
20.
RSC Adv ; 8(6): 2963-2970, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-35541162

ABSTRACT

Zr4+ doped α-MnO2 nanowires were successfully synthesized by a hydrothermal method. XRD, SEM, TEM and XPS analyses indicated that Mn3+ ions, Mn4+ ions, Mn4+δ ions and Zr4+ ions co-existed in the crystal structure of synthesized Zr4+ doped α-MnO2 nanowires. Zr4+ ions occupied the positions originally belonging to elemental manganese in the crystal structure and resulted in a mutual action between Zr4+ ions and Mn3+ ions. The mutual action made Mn3+ ions tend to lose their electrons and Zr4+ ions tend to get electrons. Cathodic polarization analyses showed that the electrocatalytic activity of α-MnO2 for oxygen reduction reaction (ORR) was remarkably improved by Zr4+ doping and the Zr/Mn molar ratio notably affected the ORR performance of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires. The highest ORR current density of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires in alkaline solution appeared at Zr/Mn molar ratio of 1 : 110, which was 23% higher than those prepared by α-MnO2 nanowires. EIS analyses indicated that the adsorption process of O2 molecules on the surface of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires was the rate-controlling step for ORR. The DFT calculations revealed that the mutual action between Zr4+ and Mn3+ in Zr4+ doped α-MnO2 nanowires enhanced the adsorption process of O2 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...