Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2401359, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663867

ABSTRACT

With the continuous upsurge in demand for wearable energy, nanogenerators are increasingly required to operate under extreme environmental conditions. Even though they are at the cutting edge of technology, nanogenerators have difficulty producing high-quality electrical output at very extreme temperatures. Here, a triboelectric basalt textile (TBT) with an ultrawide operational temperature range (from -196 to 520 °C) is created employing basalt material as the main body. The output power density of the TBT, in contrast to most conventional nanogenerators, would counterintuitively rise by 2.3 times to 740.6 mW m-2 after heating to 100 °C because the high temperature will enhance the material's interface polarization and electronic kinetic energy. The TBT retains ≈55% of its initial electrical output even after heating in the flame of an alcohol lamp (520 °C). Surprisingly, the TBTs output voltage may retain over 85% of its initial value even after submerging in liquid nitrogen. The TBTs exceptional resistance to heat and cold indicates its possible use in high and low latitudes, high altitudes, deserts, and even space settings.

2.
Viruses ; 16(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38543744

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo Hemorrhagic virus (CCHFV), is listed in the World Health Organization's list of priority diseases. The high fatality rate in humans, the widespread distribution of CCHFV, and the lack of approved specific vaccines are the primary concerns regarding this disease. We used microfluidic technology to optimize the mRNA vaccine delivery system and demonstrated that vaccination with nucleoside-modified CCHFV mRNA vaccines encoding GnNSmGc (vLMs), Gn (vLMn), or Gc (vLMc) induced different immune responses. We found that both T-cell and B-cell immune responses induced by vLMc were better than those induced by vLMn. Interestingly, immune responses were found to be lower for vLMs, which employed NSm to link Gn and Gc for non-fusion expression, compared to those for vLMc. In conclusion, our results indicated that NSm could be a factor that leads to decreased specific immune responses in the host and should be avoided in the development of CCHFV vaccine antigens.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Humans , Animals , Mice , mRNA Vaccines , Vaccination , Immunity, Cellular
3.
Ecol Evol ; 13(11): e10681, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37953986

ABSTRACT

Fish diversity plays a critical role in maintaining the balance of water ecosystems, especially in the Chongqing section of the National Nature Reserve for Rare and Endemic Fishes in the upper Yangtze River, which serves as an important habitat for rare and endemic fish, as well as an important channel for the replenishment of fishery resources in the Three Gorges Reservoir. Under a 10-year ban on fishing in the Yangtze River basin, we investigate fish diversity and seasonal variation in the Reserve by using environmental DNA (eDNA) metabarcoding. We found fishes belonging to 85 genera, 24 families, and 8 orders in the Reserve. A comparison of eDNA metabarcoding results with the diversity of a recent fish catch revealed that eDNA metabarcoding not only enables rapid and efficient fish monitoring but also has a high sensitivity. Furthermore, the study demonstrates that eDNA metabarcoding can be used as a tool for monitoring seasonal variations of fish composition in freshwater ecosystems. The alpha and beta diversity analysis both showed compositional differences in the fish community in accordance with seasonal variations. In addition, changes in eDNA relative sequence abundance and the detection of fish species at different sampling sites may reflect shifts in habitat use and distribution. Thus, we provide detailed seasonal data on fish diversity in the Chongqing section of the Reserve. This will contribute to conservation and to the understanding of fish diversity and community dynamics in the Chongqing section of the Reserve.

4.
Ecol Evol ; 13(7): e10275, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37424941

ABSTRACT

Freshwater ecosystems are under great threat from humans, among which habitat heterogeneity is the most obvious, being one of the important reasons for the decline of fish diversity. This phenomenon is particularly prominent in the Wujiang River, where the continuous rapids of the mainstream have been divided into 12 mutually isolated sections by 11 cascade hydropower reservoirs. Based on the fact that conventional survey methods are more harmful to the ecological environment, the efficient and noninvasive environmental DNA metabarcoding (eDNA) approach was used in this study to conduct an aquatic ecological survey of the 12 river sections of the mainstream of the Wujiang River. A total of 2299 operational taxonomic units (OTUs) were obtained, corresponding to 97 species, including four nationally protected fish species and 12 alien species. The results indicate that the fish community structure of the Wujiang River mainstream, which was originally dominated by rheophilic fish species, has been changed. And there are differences in fish species diversity and species composition among the reservoir areas of the mainstream of the Wujiang River. The fish species in the area have gradually declined under the influence of anthropogenic factors such as terraced hydropower and overfishing. The fish populations consequently have demonstrated a tendency to be species miniaturized, and the indigenous fish are severely threatened. In addition, the fish composition monitored by the eDNA approach was found to be close to the fish composition of historical information on the Wujiang River, indicating that eDNA approach may be used as a complementary tool to conventional methods in this basin.

5.
Int J Pharm ; 640: 123050, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37201764

ABSTRACT

Lipid nanoparticles (LNPs) have demonstrated efficacy and safety for mRNA vaccine administration by intramuscular injection; however, the pulmonary delivery of mRNA encapsulated LNPs remains challenging. The atomization process of LNPs will cause shear stress due to dispersed air, air jets, ultrasonication, vibrating mesh etc., leading to the agglomeration or leakage of LNPs, which can be detrimental to transcellular transport and endosomal escape. In this study, the LNP formulation, atomization methods and buffer system were optimized to maintain the LNP stability and mRNA efficiency during the atomization process. Firstly, a suitable LNP formulation for atomization was optimized based on the in vitro results, and the optimized LNP formulation was AX4, DSPC, cholesterol and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio. Subsequently, different atomization methods were compared to find the most suitable method to deliver mRNA-LNP solution. Soft mist inhaler (SMI) was found to be the best for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties such as size and entrapment efficiency (EE) of the LNPs were further improved by adjusting the buffer system with trehalose. Lastly, the in vivo fluorescence imaging of mice demonstrated that SMI with proper LNPs design and buffer system hold promise for inhaled mRNA-LNP therapies.


Subject(s)
Lipids , Nanoparticles , Mice , Animals , Lipids/chemistry , RNA, Messenger , Liposomes , Endosomes , Nanoparticles/chemistry , RNA, Small Interfering
6.
Gen Comp Endocrinol ; 338: 114274, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36940834

ABSTRACT

Photoperiod has been well-documented to be involved in regulating many activities of animals. However, whether photoperiod takes part in mood control, such as fear response in fish and the underlying mode(s) of action remain unclear. In this study, adult zebrafish males and females (Danio rerio) were exposed to different photoperiods, Blank (12 h light: 12 h dark), Control (12 h light: 12 h dark), Short daylight (SD, 6 h light: 18 h dark) and Long daylight (LD, 18 h light: 6 h dark) for 28 days. After exposure, fear response of the fish was investigated using a novel tank diving test. After alarm substance administration, the onset to higher half, total duration in lower half and duration of freezing in SD-fish were significantly decreased, suggesting that short daylight photoperiod is capable of alleviating fear response in zebrafish. In contrast, comparing with the Control, LD didn't show significant effect on fear response of the fish. Further investigation revealed that SD increased the levels of melatonin (MT), serotonin (5-HT) and dopamine (DA) in the brain while decreased the plasma level of cortisol comparing to the Control. Moreover, the expressions of genes in MT, 5-HT and DA pathways and HPI axis were also altered consistently. Our data indicated that short daylight photoperiod might alleviate fear response of zebrafish probably through interfering with MT/5-HT/DA pathways and HPI axis.


Subject(s)
Melatonin , Photoperiod , Animals , Female , Male , Zebrafish/metabolism , Serotonin , Fear , Melatonin/metabolism , Dopamine/metabolism
7.
Article in English | MEDLINE | ID: mdl-36781090

ABSTRACT

Carbamazepine (CBZ) is one of the widely distributed pharmaceutical residues in aquatic environments, yet few researches have addressed its chronic effect on the anxiety of fish, and the mechanisms possibly involved remained elusive. In this study, adult female zebrafish (Danio rerio) were exposed to environmental relevant concentrations of CBZ (CBZ-low, 10 µg/L; CBZ-high, 100 µg/L) for 28 days. After exposure, CBZ-high didn't affect the anxiety of fish. However, the onset time to the higher half of the tank was delayed and the total duration in the lower half of the tank was increased in CBZ-low fish, suggesting an increased anxiety. Further investigation indicated that CBZ-low significantly decreased the gamma-aminobutyric acid (GABA) level in the brain, while increased the serotonin (5-HT) level in the brain and cortisol level in plasma. Accordingly, the mRNA levels of genes in GABA (gad2, abat, gabrb2, gabrg2, gria1a and slc12a2) pathway and HPI (crha, actha, pc1 and pc2) axis were also altered. Despite the upregulation of tph2 was consistent with increased 5-HT level in the brain, significantly downregulated htr1aa and htr1b may indicate attenuated 5-HT potency. Although CBZ-high significantly reduced GABA level in the brain and increased cortisol level in plasma, the effects were dramatically alleviated than that of CBZ-low. Consistently, the expression of genes in HPI (crha, actha, pc1 and pc2) axis and GABA (gad2 and abat) pathway were also altered by CBZ-high, probably due to inconspicuous anxiety response of CBZ-high. Briefly, our data suggested that low concentration of CBZ disrupted zebrafish anxiety by interfering with neurotransmission and endocrine system, thereby bringing about adverse ecological consequences.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Female , Zebrafish/metabolism , Serotonin/metabolism , Hydrocortisone/metabolism , Carbamazepine/toxicity , Anxiety/chemically induced , gamma-Aminobutyric Acid , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
8.
World J Gastroenterol ; 29(3): 561-578, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36688020

ABSTRACT

BACKGROUND: Angiosarcoma is a highly malignant soft-tissue sarcoma derived from vascular endothelial cells that mainly occurs in the skin and subcutaneous tissues. Small-intestinal angiosarcomas are rare, and the prognosis is poor. CASE SUMMARY: We reported a case of primary multifocal ileal angiosarcoma and analyze previously reported cases to improve our understanding of small intestinal angiosarcoma. Small intestinal angiosarcoma is more common in elderly and male patients. Gastrointestinal bleeding, anemia, abdominal pain, weakness, and weight loss were the common symptoms. CD31, CD34, factor VIII-related antigen, ETS-related gene, friend leukemia integration 1, and von Willebrand factor are valuable immunohistochemical markers for the diagnosis of small-intestinal angiosarcoma. Small-intestinal angiosarcoma most commonly occurs in the jejunum, followed by the ileum and duodenum. Radiation and toxicant exposure are risk factors for angiosarcoma. After a definite diagnosis, the mean and median survival time was 8 mo and 3 mo, respectively. Kaplan-Meier survival analysis showed that age, infiltration depth, chemotherapy, and the number of small intestinal segments invaded by tumor lesions were prognostic factors for small intestinal angiosarcoma. Multivariate Cox regression analysis showed that chemotherapy and surgery significantly improved patient prognosis. CONCLUSION: Angiosarcoma should be considered for unexplained melena and abdominal pain, especially in older men and patients with a history of radiation exposure. Prompt treatment, including surgery and adjuvant chemotherapy, is essential to prolonging patient survival.


Subject(s)
Hemangiosarcoma , Jejunal Neoplasms , Humans , Male , Aged , Hemangiosarcoma/diagnosis , Hemangiosarcoma/therapy , Hemangiosarcoma/pathology , Endothelial Cells/pathology , Intestine, Small/pathology , Jejunal Neoplasms/diagnosis , Jejunal Neoplasms/therapy , Jejunal Neoplasms/pathology , Prognosis , von Willebrand Factor
10.
Mitochondrial DNA B Resour ; 7(10): 1764-1765, 2022.
Article in English | MEDLINE | ID: mdl-36237204

ABSTRACT

Acrossocheilus yunnanensis is an endemic species in China. In this study, the complete mitochondrial genome of A. yunnanensis was determined. It was 16,587 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a putative control region. Phylogenetic analysis showed that A. yunnanensis was clustered with A. monticola.

11.
Foods ; 11(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36076903

ABSTRACT

Rice polishing is an important approach to reducing the concentrations of heavy metals in rice, but knowledge of its effect on the Pb and Cd bioavailability in produced rice and the related health risk remains limited. In this study, the effects of rice polishing on the bioaccessibility (BAC) and bioavailability (RBA) of Pb and Cd in rice are assessed using an in vitro method and an in vivo mouse bioassay. The Pb removal rate in brown rice (40%), lightly processed brown rice (62%), germinated rice (74%), and polished rice (79%) gradually enhanced with an increase in the polishing degree, while Cd was difficult to remove by polishing. The Pb and Cd BAC in germinated rice was the highest, while that in brown rice was the lowest. The polished rice Pb and Cd RBA in the liver and kidneys were significantly higher than those in the brown rice group. The Pb RBA in the livers and kidneys in the polished rice group was 26.6% ± 1.68% and 65.3% ± 0.83%, respectively, which was 1.6- and 2.6-times higher than that in the brown rice group, respectively. The Cd RBA values in both the livers and kidneys of the polished rice group were 1.3-times higher than those in the brown rice group. Although polishing reduced the total Pb in the polished rice, it was not enough to offset the increase in bioavailability, and its consumption risk was not weakened. This study highlighted the value of the oral-bioavailability-corrected health risk assessment for assessing the influence of rice polishing on Pb and Cd exposure via rice consumption.

12.
Front Genet ; 13: 946845, 2022.
Article in English | MEDLINE | ID: mdl-36105111

ABSTRACT

N7-Methylguanosine (m7G) is an RNA modification serving as a key part of colon cancer development. Thus, a comprehensive analysis was executed to explore prognostic roles and associations with the immune status of the m7G-related lncRNA (m7G-RNAs) in colon adenocarcinoma (COAD). Identification of m7G-RNAs was achieved via Pearson's correlation analysis of lncRNAs in the TCGA-COAD dataset and m7G regulators. A prognostic signature was developed via LASSO analyses. ESTIMATE, CIBERSORT, and ssGSEA algorithms were utilized to assess immune infiltration between different risk groups. Survival analysis suggested the high-risk group possesses poor outcomes compared with the low-risk group. According to the ROC curves, the m7G-RNAs signature exhibited a reliable capability of prediction (AUCs at 1, 3, and 5 years were 0.770, 0.766, and 0.849, respectively). Multivariate hazard analysis proved that the signature was an independent predictive indicator for OS. Moreover, the risk score was related to infiltration levels of naïve B cells, CD4+ memory T cells, and resting NK cells. The result revealed the prognostic value of m7G modification in COAD and provided a novel perspective on personalized immunotherapy strategies.

13.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35659605

ABSTRACT

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Subject(s)
COVID-19 , Viral Vaccines , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Mice, Inbred C57BL , Pan troglodytes , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic
14.
Front Oncol ; 12: 809430, 2022.
Article in English | MEDLINE | ID: mdl-35359367

ABSTRACT

Objective: To investigate the correlation between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and the pathological classification of idiopathic orbital inflammatory pseudotumors (IOIPs). Methods: Nineteen patients who were diagnosed with IOIPs (a total of 24 affected eyes) between November 2018 and December 2020 were included in the study. All the patients underwent magnetic resonance imaging orbital plain scans and IVIM-DWI multiparameter scans before an operation. The true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were obtained. Based on histopathology, the lesions were divided into three types: lymphocytic infiltration, fibrosclerotic, and mixed. The correlation between IVIM-DWI parameters and pathological classification was tested with the histopathological results as the gold standard. The data were analyzed using SPSS version 17.0, with P < 0.05 defined as significant. Results: Among the 19 patients (24 eyes) affected by IOIP, there were no significant differences between IOIP pathological classification and gender or age (P > 0.05). There were statistically significant differences between the D and f values for different pathological types of IOIP and IVIM parameters (P < 0.05), and there was no significant difference in D* value between the different pathological types (P > 0.05). Conclusion: The D and f values showed correlation with different types of IOIP, and the sensitivity of the D value was higher than that of the f value. The D* value showed no significant distinction between pathological types of IOIP.

15.
Sci Total Environ ; 832: 155049, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35390393

ABSTRACT

Terrestrial soils release large amount of carbon dioxide (CO2) each year, which are mainly derived from litter and soil carbon (C) decomposition. Nutrient availability, especially nitrogen (N) and phosphorus (P), plays an important role in both litter and soil C decomposition. Therefore, understanding the underlying mechanism is crucial for mitigating CO2 emission and climate changes. Here, we assessed patterns of litter and soil C decomposition after 11 yrs. in-situ N and P addition in a tropical forest where corn leaves or corn roots were added as litter C. The total CO2 efflux was quantified and partitioned using 13C isotope signatures to determine the sources (litter or soil C) every three months. In addition, Changes in C-degrading enzyme activities: ß-1,4-glucosidase (BG), phenol oxidase (PHO) and peroxidase (PER), and microbial biomarkers were assessed to interpret the underlying mechanism. Total C-release was enhanced up to17% by the long-term N addition but inhibited up to 15% by P addition. Precisely, N addition only accelerated the litter decomposition and increased about 42% and 6% of the litter C release at 0-5 cm and 5-10 cm soil depths, respectively; while P addition only impeded the soil C decomposition and decreased about 9% and 11% of the soil C release at 0-5 cm and 5-10 cm, respectively. The enhanced C release under N addition might be attributed to the enhanced microbial biomass, the ratio of fungi to bacteria and C-degrading enzyme activities. However, P addition resulted in the reverse result in microbial properties and C-degrading enzyme activities, associated with a decreased C release. Our study suggests that the long-term N and P addition selectively affected the litter and soil C decomposition because of their different physiochemical properties and this tendency might be more pronounced in tropical forests exposed to increasing atmospheric N deposition in the future. The study indicates that the different patterns of litter and soil C decomposition under climate change should be taken account in the future C management strategies.


Subject(s)
Nitrogen , Soil , Carbon Dioxide/analysis , Ecosystem , Forests , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/chemistry , Soil/chemistry , Soil Microbiology
16.
EMBO Mol Med ; 14(5): e14844, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35362189

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can cause gastrointestinal (GI) symptoms that often correlate with the severity of COVID-19. Here, we explored the pathogenesis underlying the intestinal inflammation in COVID-19. Plasma VEGF level was particularly elevated in patients with GI symptoms and significantly correlated with intestinal edema and disease progression. Through an animal model mimicking intestinal inflammation upon stimulation with SARS-CoV-2 spike protein, we further revealed that VEGF was over-produced in the duodenum prior to its ascent in the circulation. Mechanistically, SARS-CoV-2 spike promoted VEGF production through activating the Ras-Raf-MEK-ERK signaling in enterocytes, but not in endothelium, and inducing permeability and inflammation. Blockage of the ERK/VEGF axis was able to rescue vascular permeability and alleviate intestinal inflammation in vivo. These findings provide a mechanistic explanation and therapeutic targets for the GI symptoms of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Enterocytes/metabolism , Humans , Inflammation/metabolism , Spike Glycoprotein, Coronavirus , Vascular Endothelial Growth Factor A
17.
Quant Imaging Med Surg ; 12(3): 1684-1697, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35284257

ABSTRACT

Background: High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors. In this study, we aimed to determine the value of magnetic resonance (MR)-based preoperative nomogram in predicting TMB status in lower-grade glioma (LGG) patients. Methods: Overall survival (OS) data were derived from The Cancer Genome Atlas (TCGA) and then analyzed by using the Kaplan-Meier method and time-dependent receiver operating characteristic (tdROC) analysis. The magnetic resonance imaging (MRI) data of 168 subjects obtained from The Cancer Imaging Archive (TCIA) were retrospectively analyzed. The correlation was explored by univariate and multivariate regression analyses. Finally, we performed tenfold cross validation. TMB values were retrieved from the supplementary information of a previously published article. Results: The high TMB subtype was associated with the shortest median OS (high vs. low: 50.9 vs. 95.6 months, P<0.05). The tdROC for the high-TMB tumors was 74% (95% CI: 61-86%) for survival at 12 months, and 71% (95% CI: 60-82%) for survival at 24 months. Multivariate logistic regression analysis confirmed that three risk factors [extranodular growth: odds ratio (OR): 8.367, 95% CI: 3.153-22.199, P<0.01; length-width ratio ≥ median: OR: 1.947, 95% CI: 1.025-3.697, P<0.05; frontal lobe: OR: 0.455, 95% CI: 0.229-0.903, P<0.05] were significant independent predictors of high-TMB tumors. The nomogram showed good calibration and discrimination. This model had an area under the curve (AUC) of 0.736 (95% CI: 0.655-0.817). Decision curve analysis (DCA) demonstrated that the nomogram was clinically useful. The average accuracy of the tenfold cross validation was 71.6% for high-TMB tumors. Conclusions: Our results indicated that a distinct OS disadvantage was associated with the high TMB group. In addition, extranodular growth, nonfrontal lobe tumors and length-width ratio ≥ median can be conveniently used to facilitate the prediction of high-TMB tumors.

18.
Sci Total Environ ; 823: 153314, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35124037

ABSTRACT

Seasonal precipitation regime plays a vital role in regulating nutrient dynamics in seasonally dry tropical forests. Present evidence suggests that not only wet season precipitation is increasing in the tropics of South China, but also that the wet season is occurring later. However, it is unclear how nutrient dynamics will respond to the projected precipitation regime changes. We assessed the impacts of altered seasonal precipitation on soil net N mineralization in a secondary tropical forest. Since 2013, by reducing throughfall and/or irrigating experimental plots, we delayed the wet season by two months from April-September to June-November (DW treatment) or increased annual precipitation by 25% in July and August (WW treatment). We measured soil net N mineralization rates and assessed soil microbial communities in January, April, August and November in 2015 and 2017. We found that a wetter wet season did not significantly affect soil microbes or net N mineralization rates, even in the mid-wet season (August) when soil water content in the WW treatment increased significantly. By contrast, a delayed wet season enhanced soil microbial biomass and altered microbial community structure, resulting in a two-fold increase in net N mineralization rates relative to controls in the early dry season (November). Structural equation modeling showed that the changes in net N mineralization during the early dry season were associated with altered soil microbial communities, dissolved organic N, and litterfall, which were all affected by enhanced soil water content. Our findings suggest that a delayed wet season could have a greater impact on N dynamics than increased precipitation during the wet season. Changes in the seasonal timing of rainfall might therefore influence the functioning of seasonally dry tropical forests.


Subject(s)
Forests , Soil , Biomass , Seasons , Soil/chemistry , Soil Microbiology , Tropical Climate
19.
Chemosphere ; 286(Pt 1): 131684, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34346323

ABSTRACT

The heavy metal accumulated biomass after phytoremediation needs to be decontaminated before disposal. Liquid extraction is commonly used to remove and recycle toxic heavy metals from contaminated biomass. In this study, we examined the cadmium (Cd) removal efficiency using different chemical reagents (hydrochloric acid, nitric acid, sulfuric acid, and ethylenediaminetetraacetic acid disodium) of the post-harvest Amaranthus hypochondriacus L. biomass. The purifications for the extracted liquids and ecological risk assessments for the extracted residues were also investigated. We have found that 77.8% of Cd in stems and 62.1% of Cd in leaves were removed by 0.25 M HCl after 24 h. In addition, K2CO3, KOH, and 4 Å molecular sieve could remove ≥89.0% of Cd in the extracted liquids. Finally, after we returned the extracted residues to the earthworm-incubated soil, the extracted biomass negatively affected the growth (weight loss ≥ 11.0%) and survival (mortality ≥ 33.3%) of Eisenia fetida. It should be noted that earthworms decreased soil available Cd concentrations from 0.14-0.05 mg kg-1 to 0.11-0.04 mg kg-1 and offset the negative effects of the Cd-contaminated biomass on soil microbes. Overall, given the cost of reagents, the Cd removal efficiency, and the ecological risks of the extracted biomass, using 0.25 M HCl for liquid extraction and K2CO3 for purification should be recommended. This work highlights the potential of liquid extraction for immediately and directly removing the Cd from fresh contaminated accumulator biomass and the resource cycling potential of the extracted liquids and biomass after purification.


Subject(s)
Amaranthus , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Decontamination , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...