Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Opt Lett ; 49(15): 4166-4169, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090885

ABSTRACT

The polarization and orbital angular momentum (OAM) degrees of freedom carried by light have important applications in precision optical measurement and optical sensing. Here we show that the electro-optic Pockels effect of a magnesium-doped lithium niobate (MgO:LiNbO3) crystal can be used to measure a low-frequency electric field. By exploiting the rotation property of superposition OAM light, we experimentally observe that the minimum measured precision of electric field intensity is about 0.18 V/m. This study offers a method to perform low-frequency electric field sensing.

2.
Talanta ; 278: 126521, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996559

ABSTRACT

The sensitivity and accuracy of fluorescence probes for biological samples are affected by not only interfering molecule compounds but also the nonspecific adsorption of proteins and other macromolecules. Herein, fluorescence probe based on zwitterionic sulfobetaine methacrylate polymer (PSBMA) as an antibiofouling layer and amino boric acid carbon dots encapsulated in the metal-organic framework UiO-66-NH2 (UiO-66-NH2/BN-CDs) as a target recognition site was designed for the detection of baicalin (BAI). Owing to the introduction of BN-CDs into UiO-66-NH2 with high specific surface area, the prepared UiO-66-NH2/BN-CDs@PSBMA probe exhibited a high adsorption capacity of 78.9 mg g-1, while presented fluorescence enhancing and superior fluorescence selectivity to BAI at excitation and emission wavelengths of 400 and 425 nm, respectively. Connecting PSBMA with good hydrophilicity to UiO-66-NH2, resulted in an anti-protein capacity of over 96.3 %, effectively inhibiting protein interference with the fluorescence signal. By virtue of its good antibiofouling and recognizing capacities, the fluorescence probe exhibited a satisfactory detection range of 10-80 nmol L-1, with a fairly low detection limit of 0.0064 µmol L-1. Using the method to detect BAI in Goji berry, Sophora and Yinhuang oral solution, demonstrating its potential for the accurate and quantitative detection of BAI in complex biological samples.


Subject(s)
Boronic Acids , Carbon , Flavonoids , Fluorescent Dyes , Metal-Organic Frameworks , Quantum Dots , Fluorescent Dyes/chemistry , Metal-Organic Frameworks/chemistry , Boronic Acids/chemistry , Carbon/chemistry , Flavonoids/chemistry , Flavonoids/analysis , Quantum Dots/chemistry , Biofouling/prevention & control , Polymers/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Methacrylates/chemistry , Adsorption , Betaine/chemistry , Betaine/analogs & derivatives , Phthalic Acids
3.
Mikrochim Acta ; 191(8): 495, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080110

ABSTRACT

Polar stationary phases were prepared by grafting hydrophilic acrylamide (Am) polymer brushes with post modification of carbon dots (CDs) and silicon dots (SiDs) onto SiO2 particles. The prepared stationary phases, SiO2-PAm-CDs, SiO2-PAm-CDs/SiDs, and SiO2-PAm-SiDs, were packed as chromatographic columns, respectively. Using nucleic bases, organic acids, and ß-agonists as target substances to investigate the influence of chromatographic conditions on retention and separation, the packed columns showed the partitioning and adsorption of mixed retention behavior in hydrophilic interaction liquid chromatography mode and successfully separated the polar compounds. Most importantly, under per aqueous liquid chromatography mode (using 100% water as mobile phase), those columns still had good separation ability toward nucleic bases, ß-agonist, and organic acids. Because AM is a temperature-sensitive monomer, the resulting van't Hoff curves exhibited a nonlinear relationship, having temperature-responsive chromatographic characteristic under pure water separation. Hence, building on temperature-sensitive characteristics and pure water of separation conditions, the separation selectivity toward hydrophilic compounds greatly improved. Compared with the commercial hydrophilic columns, the efficiency of our developed column had the superior ability in separation and detection of betaine in Goji berry with the enhanced resolution achieved in the proposed green separation method (just using pure water as mobile phase).

4.
J Chromatogr A ; 1720: 464807, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38461769

ABSTRACT

A method based on novel restricted access materials (RAMs) for the determination of neonicotinoid pesticides in Goji samples using offline and online solid phase extraction (SPE) coupled with high-performance liquid chromatography (LC). RAMs were synthesized using poly(chloromethylstyrene-co-divinylbenzene) (PVBC/DVB) microspheres as substrate, styrene (St) and n-vinylpyrrolidone (NVP) were first copolymerized on the interior to construct adsorption sites, and sulfobetaine methacrylate (SBMA) was then polymerized on the exterior to form exclusion sites via two-step surface initiated-atom transfer polymerization. The prepared PVBC/DVB@poly(St-co-NVP)@poly(SBMA) RAMs could efficiently extract neonicotinoid pesticides and automatically exclude proteins. Under the optimized conditions, the developed methods of offline (magnetic SPE and SPE column) and online extraction coupled with LC both using PVBC/DVB@poly(St-co-NVP)@poly(SBMA) RAMs as the extractant, exhibit a wide linearity, low limits of detection and limit of quantification and good inter-day and intra-day precision with satisfactory recoveries. Among these methods, online extraction coupled with LC based on novel RAMs exhibits clear advantages for the determination of neonicotinoid pesticides in Goji samples has clear advantages, such as simple operation by direct injection, short extraction times, and high accuracy with less human error.


Subject(s)
Pesticides , Polymers , Humans , Polymers/chemistry , Pesticides/analysis , Adsorption , Solid Phase Extraction/methods , Styrene , Chromatography, High Pressure Liquid/methods
5.
Sci Adv ; 10(10): eadm7565, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446887

ABSTRACT

Given the important advantages of the mid-infrared optical range (2.5 to 25 µm) for biomedical sensing, optical communications, and molecular spectroscopy, extending quantum information technology to this region is highly attractive. However, the development of mid-infrared quantum information technology is still in its infancy. Here, we report on the generation of a time-energy entangled photon pair in the mid-infrared wavelength band. By using frequency upconversion detection technology, we observe the two-photon Hong-Ou-Mandel interference and demonstrate the time-energy entanglement between twin photons at 3082 nm via the Franson-type interferometer, verifying the indistinguishability and nonlocality of the photons. This work is very promising for future applications of optical quantum technology in the mid-infrared band, which will bring more opportunities in the fields of quantum communication, precision sensing, and imaging.

6.
Anal Methods ; 15(47): 6571-6582, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009320

ABSTRACT

In this study, a developed chromatographic stationary phase combines the high selectivity of mixed-mode retention with a temperature-responsive property to boost separation efficiency. Copolymer brushes were grafted onto silica gels through surface initiated-atom transfer radical polymerization by polymerizing two types of monomer, temperature-responsive vinylcaprolactam (VCl) and quinine (Qun) containing benzopyridine, a tertiary ammonium positive center, and hydroxyl groups. The obtained silica@poly(Qun-co-VCl) stationary phases were packed as a chromatographic column, and the retention behavior of hydrophobic polycyclic aromatics, highly polar nucleosides, charged organic acids and ß-agonists was studied for this column under different separation modes. The ability to separate different types of analyte shows that the silica@poly(Qun-co-VCl) column provides multiple hydrophobic, hydrophilic and electrostatic interactions toward analytes, achieving the separation of various compounds in one column. In addition, temperature-dependent resolution of polycyclic aromatics, nucleosides, organic acids and ß-agonists was investigated using modulation of the column temperature, and the column exhibited adjustable separation selectivity by simply changing the column temperature. These results demonstrate that the grafting of copolymer brushes on a silica surface, consisting of temperature-responsive poly-VCl and multifunctional groups of poly-Qun, is useful as a mixed-mode chromatographic stationary phase for thermally-modulated multiple interactions. Additionally, this column was also used for the quantitative detection of uridine and inosine from cordyceps.

7.
Opt Lett ; 48(15): 3953-3956, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527091

ABSTRACT

A nonlinear process based on backward quasi-phase matching (BQPM) can be used to realize mirrorless optical parametric oscillation, the generation of paired photons with a separable joint spectral amplitude and narrow wavelength bandwidth, and the preparation of counterpropagating polarization-entangled photons, which shows distinct advantages over some applications based on forward quasi-phase matching. In this work, three types of BQPM in a bulk periodically poled potassium titanyl phosphate crystal with a single period are theoretically analyzed. Experimentally, the harmonic wave generated by second-harmonic generation in type 0 and type I exhibits a narrow bandwidth of 15.5 GHz. Furthermore, photon pairs generated by spontaneous parametric downconversion in all types of BQPM (type 0, type I, and type II) at 7th order are observed and characterized. Their coincidence-to-accidental ratios are all greater than 5 × 103 in the pump power range from 10 mW to 500 mW. This research lays the foundation for further applications of BQPM in nonlinear optics, quantum optics, and quantum information processing.

8.
Food Chem ; 418: 135988, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37001354

ABSTRACT

High-selectivity and high-exclusion restricted access materials (RAMs) benefit the analysis of biological samples. Herein, triblock copolymer-functionalized poly(4-vinylbenzyl chloride-co-divinylbenzene) (PVBC/DVB) microspheres were prepared via the sequential surface-initiated atom radical polymerization of hydrophobic styrene (St), ionic vinylimidazole (VIm), and zwitterionic sulfobetaine methacrylate (SBMA), affording RAMs with multiple interaction-adsorption sites and zwitterionic polymer exclusion sites on the internal and external surfaces of PVBC/DVB. The preferential extraction of fluoroquinolones (FQs) is realized based on the hydrophobic/π-π/ion exchange interactions due to the grafted poly-St-VIm, and the zwitterionic poly-SBMA block in the triblock copolymers can efficiently exclude various proteins. A sensitive detection method for FQs in chicken was established by solid phase extraction with RAMs as adsorbent combined with UPLC-MS/MS, achieving wide linearity (2.0-200.0 ng mL-1), low limit of detection (0.5 µg kg-1) and limit of quantification (1.5 µg kg-1), and good inter- and intraday precision with satisfactory recoveries (104.1%-117.7% and 115.3%-121.2% with RSDs < 12%).


Subject(s)
Fluoroquinolones , Polymers , Fluoroquinolones/analysis , Chromatography, Liquid , Polymers/chemistry , Tandem Mass Spectrometry , Solid Phase Extraction/methods
9.
Light Sci Appl ; 11(1): 312, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36302753

ABSTRACT

The change in the relative phase between two light fields serves as a basic principle for the measurement of the physical quantity that guides this change. It would therefore be highly advantageous if the relative phase could be amplified to enhance the measurement resolution. One well-known method for phase amplification involves the use of the multi-photon number and path-entangled state known as the NOON state; however, a high-number NOON state is very difficult to prepare and is highly sensitive to optical losses. Here we propose and experimentally demonstrate in principle a phase amplifier scheme with the assistance of a harmonic generation process. The relative phase difference between two polarization modes in a polarized interferometer is amplified coherently four times with cascaded second-harmonic generation processes. We demonstrate that these amplification processes can be recycled and therefore have the potential to realize much higher numbers of multiple amplification steps. The phase amplification method presented here shows considerable advantages over the method based on NOON states and will be highly promising for use in precision optical measurements.

10.
Appl Bionics Biomech ; 2022: 5627959, 2022.
Article in English | MEDLINE | ID: mdl-36157122

ABSTRACT

Traditional manufacturing system inspections are primarily conducted through microtools. Nowadays, the size of consciously manufactured parts that is getting smaller and smaller, wherein unwritten methods are subject to subjectivity, often resulting in reckless deviations. It is necessary to develop a highly efficient and correct discovery technique. Given the leaned flexibility of traditional manufacturability analysis methods based on cognitive notoriety and empire foundation, the reality that existing manufacturability analysis methods based on full scientific support cannot give a specific purpose for capability manufacturability. A deep cognition support framework grants the manufacturability analysis example. Manufacturing separative methods are presented as imitate. First, a large enumeration of 3D CAD plan with specific manufacturability are made by digital modeling technology, wherein the tier genealogy is realized to cause the data adjustments required for thorough academics. Then, concavity-oriented designs are established on the PointNet entangle form manufacturability. Dense learned grids were analyzed, and network parameter tuning and management were done; then comparisons with voxel-representation-enabled three-dimensional convolutional neural networks (3D-CNN) and existing methods revealed detailed literature for fabricating networks with better robustness and lower algorithm cycle complexity; finally, the actual completion of the network is verified through the example section, and the manufacturability of the cave shape is analyzed to identify the unmanufacturable overall form and explain its considerations. The experimental results have shown that the rule can determine the specific reasons for the unmanufacturable shape under the condition of ensuring the complete notification accuracy ratio, and has a great reproducibility value.

11.
Appl Bionics Biomech ; 2022: 3458717, 2022.
Article in English | MEDLINE | ID: mdl-36157124

ABSTRACT

In recent years, deep learning models have been widely used in 3D reconstruction fields and have made remarkable progress. How to stimulate deep academic interest to effectively manage the explosive augmentation of 3D models has been a research hotspot. This work shows mainstream 3D model retrieval algorithm programs based on deep learning currently developed remotely, and further subdivides their advantages and disadvantages according to the behavior evaluation of the algorithm programs obtained by trial. According to other restoration applications, the main 3D model retrieval algorithms can be divided into two categories: (1) 3D standard restoration methods supported by the model, i.e., both the restored object and the recalled object are 3D models. It can be further divided into voxel-based, point coloring-based, and appearance-based methods, and (2) cross-domain 3D model recovery methods supported by 2D replicas, that is, the retrieval motivation is 2D images, and the recovery appearance is 3D models, including retrieval methods supported by 2D display, 2D depiction-based realistic replication and 3D mold recovery methods. Finally, the work proposed novel 3D fashion retrieval algorithms supported by deep science that are analyzed and ventilated, and the unaccustomed directions of future development are prospected.

12.
Opt Lett ; 47(4): 898-901, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167553

ABSTRACT

Comet-tail-like interference patterns are observed using photons from the spontaneous parametric downconversion (SPDC) process. The patterns are caused by the angular-spectrum-dependent interference and the diffraction of a blazed grating. We present a theoretical explanation and simulation results for these patterns, which are in good agreement with the experimental results. The most significant feature of the patterns is the bright parabolic contour profile, from which one can deduce the parameter of the parabolic tuning curve of the SPDC process. This method could be helpful when designing experiments based on SPDC.

13.
Opt Express ; 28(24): 35415-35426, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379656

ABSTRACT

With the development of optical information processing technology, image edge enhancement technology has rapidly received extensive attention, especially in the field of quantum imaging. However, quantum edge enhanced imaging faces challenges in terms of time-consuming acquisition processes and the complexity of the devices used, which limits practical applications in real-time usage scenarios. Here we introduce and experimentally demonstrate a real-time (0.5 Hz) quantum edge enhanced imaging method that combines the spiral phase contrast technique with heralded single-photon imaging. The edge enhancement results show high quality and background free from raw data. Compared with direct imaging, our configuration can improve the signal-to-noise ratio significantly using the tight time correlations between photon pairs. The method also offers competitive advantages over ghost imaging, including higher brightness and a compact optical fiber delay rather than a free space delay. Additionally, we explore curved edge enhancement for specific feature recognition and the oriented shadow effect. Overall, this efficient and versatile platform paves an alternative path toward real-time quantum edge detection in applications including nondestructive bio-imaging, night vision and covert monitoring.

14.
Sci Adv ; 6(51)2020 Dec.
Article in English | MEDLINE | ID: mdl-33328227

ABSTRACT

Metasurfaces consisting of engineered dielectric or metallic structures provide unique solutions to realize exotic phenomena including negative refraction, achromatic focusing, electromagnetic cloaking, and so on. The intersection of metasurface and quantum optics may lead to new opportunities but is much less explored. Here, we propose and experimentally demonstrate that a polarization-entangled photon source can be used to switch ON or OFF the optical edge detection mode in an imaging system based on a high-efficiency dielectric metasurface. This experiment enriches both fields of metasurface and quantum optics, representing a promising direction toward quantum edge detection and image processing with remarkable signal-to-noise ratio.

15.
Opt Express ; 28(4): 5077-5084, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121736

ABSTRACT

Entangled sources are important components for quantum information science and technology (QIST). The ability to generate high-quality entangled sources will determine the extent of progress in this field. Unlike previous schemes, a thin quasi-phase matching nonlinear crystal and a dense-wave-division-multiplexing device are used here to build high-quality versatile photonic sources with a simple configuration that can be used to perform Hong-Ou-Mandel interference, time-energy entanglement and multi-channel polarization entanglement experiments. The measurement results from various quantum optical experiments show the high quality of these photonic sources. These multi-functional photonic sources will be very useful in a variety of QIST applications.

16.
Opt Express ; 27(13): 18363-18375, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252781

ABSTRACT

An analogous model system for high-dimensional quantum entanglement is proposed, based on the angular and radial degrees of freedom of the improved Laguerre Gaussian mode. Experimentally, we observed strong violations of the Bell-CGLMP inequality for maximally non-separable states of dimension 2 through 10. The results for violations in classical non-separable state are in very good agreement with quantum instance, which illustrates that our scheme can be a useful platform to simulate high-dimensional non-local entanglement. Additionally, we found that the Bell measurements provide sufficient criteria for identifying mode separability in a high-dimensional space. Similar to the two-dimensional spin-orbit non-separable state, the proposed high-dimensional angular-radial non-separable state may provide promising applications for classical and quantum information processing.

17.
Opt Lett ; 44(2): 219-222, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30644865

ABSTRACT

Vector beams (VBs) are widely investigated for their special intensities and polarization distributions, which are useful in optical micromanipulation, optical microfabrication, optical communication, and single molecule imaging. To date, nonlinear frequency conversion (NFC) and manipulation of VBs remain challenging because of the polarization sensitivity of most nonlinear processes. Here we report an experimental realization of NFC and manipulation of VBs that can be used to expand the available frequency band. The main idea of our scheme is the introduction of a Sagnac loop to solve the polarization dependence problem of NFC in nonlinear crystals. Additionally, we find that a linearly polarized VB should be transformed into a hybrid-polarized VB in exponential form before performing NFC. The experimental results agree well with those of our theoretical model. The proposed method is also applicable to other wavebands and second-order nonlinear processes, and may be generalized to the quantum regime for single photons.

18.
Opt Express ; 26(22): 28429-28440, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470014

ABSTRACT

Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal-oxide-semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

19.
Phys Rev Lett ; 120(26): 263601, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004733

ABSTRACT

The interferometer is one of the most important devices for revealing the nature of light and for precision optical metrology. Although many experiments were performed for probing photon behavior in various configurations, a complete study of photon behavior in a birefringent interferometer has not been performed, to our knowledge. By using an environmental turbulence immune Mach-Zehnder interferometer, we observe tunable photonic beatings by rotating a birefringent crystal versus the temperature of the crystal for both the single photon and two photons. Furthermore, the two-photon interference fringes beat 2 times faster than the single-photon interference fringes. This beating effect is used to determine the thermal dispersion coefficients of the two principal refractive axes with a single measurement: the two-photon interference shows superresolution and high sensitivity. Obvious differences between two-photon and single-photon interference are also revealed in unbalanced situations. In addition, the influence of the photon bandwidth on the beating behaviors that come from polarization-dependent decoherence is also investigated. Our findings will be important for better understanding the behavior of two-photon interference in a birefringent interferometer and for precision optical metrology with quantum enhancement.

20.
Opt Express ; 26(10): 12912-12921, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801324

ABSTRACT

Optical quantum states based on entangled photons are the key resource in quantum-information science. The realization of multiplexed multiple entanglement are necessary for developing high-capacity quantum information process. Silicon-on-insulator (SOI) has recently become a leading platform for generating and processing of non-classical optical states. In this work, by combining the wavelength- and time-division multiplexing technologies, we demonstrate a multiplexing time-bin entangled photon pair source based on a silicon nanowire waveguide and distribute entangled photons into 3(time) × 14(wavelength) channels independently. The indistinguishability of photon pairs in each time channel is confirmed by a fourfold Hong-Ou-Mandal quantum interference. Our work paves a new and promising way to achieve a high capacity quantum communication and to generate a multiple-photon non-classical state.

SELECTION OF CITATIONS
SEARCH DETAIL