Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 359
Filter
1.
Article in English | MEDLINE | ID: mdl-38736356

ABSTRACT

To improve the performance of Cu2ZnSn(S,Se)4 solar cells, a strategy is proposed to improve the quality of absorber and back interface simultaneously by substituting V-doped Mo (Mo:V) for a conventional Mo back electrode and incorporating Ag into the Cu2ZnSn(S,Se)4 (ACZTSSe) absorber in this work. Since p+-type V-doped MoSe2 (MoSe2:V) is formed in the site between the absorber and Mo:V during selenization, the conventional Mo/n-MoSe2 back contact is modified to Mo:V/p+-MoSe2:V, a back surface passivation field (BSPF) is established at the back interface, the band bending of MoSe2:V is downward and that of bottom of the absorber is upward. Further investigation reveals that the back contact modification and Ag doping have a synergistic effect on inhibiting carrier recombination, decreasing series resistance and increasing shunt resistance, thereby leading to the PCE of device without antireflection coating increased from 8.61 to 10.98%, which is larger than the sum of increase in PCE induced by Ag doping alone (8.61 to 9.66%) and back contact modification alone (8.61 to 9.63%). It is demonstrated that the synergistic effect stems mainly from the strengthened BSPF and the further reduced back contact barrier height. The former is due to the increased difference in work function (WF) between MoSe2:V and absorber induced by the reduced WF of the absorber after Ag doping and the raised WF of MoSe2:V after V doping. The latter is due to the downshifted valence band maximum of absorber after Ag doping. This work highlights the synergistic effect of back contact modification and Ag doping on improving the performance of CZTSSe solar cells and also provides an effective way to suppress carrier recombination.

2.
Animals (Basel) ; 14(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731328

ABSTRACT

Standing and lying are the fundamental behaviours of quadrupedal animals, and the ratio of their durations is a significant indicator of calf health. In this study, we proposed a computer vision method for non-invasively monitoring of calves' behaviours. Cameras were deployed at four viewpoints to monitor six calves on six consecutive days. YOLOv8n was trained to detect standing and lying calves. Daily behavioural budget was then summarised and analysed based on automatic inference on untrained data. The results show a mean average precision of 0.995 and an average inference speed of 333 frames per second. The maximum error in the estimated daily standing and lying time for a total of 8 calf-days is less than 14 min. Calves with diarrhoea had about 2 h more daily lying time (p < 0.002), 2.65 more daily lying bouts (p < 0.049), and 4.3 min less daily lying bout duration (p = 0.5) compared to healthy calves. The proposed method can help in understanding calves' health status based on automatically measured standing and lying time, thereby improving their welfare and management on the farm.

3.
Anim Biotechnol ; 35(1): 2337760, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38656923

ABSTRACT

Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.


Subject(s)
Knee Joint , Temporomandibular Joint , Animals , Swine/embryology , Temporomandibular Joint/embryology , Temporomandibular Joint/growth & development , Knee Joint/embryology , Knee Joint/growth & development , Cartilage, Articular/embryology , Cartilage, Articular/growth & development , Female , Embryonic Development/physiology , Embryo, Mammalian
4.
Am J Surg ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38594142

ABSTRACT

OBJECTIVES: There remains a lack of consensus regarding the benefits of stent placement following pancreaticojejunostomy in terms of clinically relevant postoperative pancreatic fistulas (CR-POPFs). This study was aimed at analyzing the effects of stent placement, stent technique (internal and external), stent size, and dilation of the main pancreatic duct on CR-POPFs. METHODS: Our study comprised a systematic review and meta-analysis of randomized controlled trials involving patients undergoing pancreaticojejunostomy. The primary outcome was defined as the incidence of CR-POPFs. Additionally, subgroup analyses were conducted, and pooled analyses were performed to provide comparative references. RESULTS: Twelve randomized controlled trials, including a total of 1117 patients, were included. Compared with no stent placement, stenting did not exhibit a significant association with reduced CR-POPF incidence (odds ratio [OR] â€‹= â€‹0.60, 95% CI: 0.34-1.04, P â€‹= â€‹0.07). Subgroup analysis revealed that only external stents, and not internal stents, were significantly associated with a reduced CR-POPF incidence compared with no stent placement (OR â€‹= â€‹0.53, 95% CI: 0.28-0.99, P â€‹= â€‹0.05 vs. OR â€‹= â€‹0.92, 95% CI: 0.28-3.05, P â€‹= â€‹0.89). Furthermore, stent placement in patients with a main pancreatic duct diameter of ≤3 â€‹mm, and not in those with a main pancreatic duct diameter of >3 â€‹mm, was associated with a significantly reduced CR-POPF incidence compared with no stent placement (OR â€‹= â€‹0.24, 95% CI: 0.07-0.78, P â€‹= â€‹0.02 vs. OR â€‹= â€‹1.58, 95% CI: 0.41-6.06, P â€‹= â€‹0.50). CONCLUSIONS: The findings suggest a potential role for external stent placement in the prevention of CR-POPFs after pancreaticojejunostomy, particularly in patients with undilated pancreatic ducts. The reliability of our findings is constrained by the limited number of studies included. PROSPERO REGISTRATION NUMBER: CRD42022380103.

5.
Heliyon ; 10(5): e27105, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439872

ABSTRACT

Pulmonary large-cell neuroendocrine carcinoma (LCNEC) is an uncommon subtype of lung cancer with bleak prognosis. Its optimal treatment remains undetermined due to its malignancy. A 66-year-old man diagnosed with unresectable locally advanced LCNEC exhibited partial radiographic response to chemo-immunotherapy. He underwent salvage surgery after 4 rounds of docetaxel/nedaplatin (DP) regimen plus sintilimab, a highly selective monoclonal antibody which targets human anti-programmed death-ligand 1 (PD-L1). In addition, the pathologic examination of the excision demonstrated that there were no viable residuary tumor cells. This case indicates that neoadjuvant chemo-immunotherapy might benefit patients with locally advanced LCNEC, which deserves further investigation.

6.
J Virol ; 98(3): e0198223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411106

ABSTRACT

Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Swine Diseases , Animals , Child , Humans , Diarrhea , Haiti , Interleukin-11/metabolism , NLR Proteins/metabolism , Nucleotides/metabolism , Phosphorylation , Signal Transduction , Swine , Zoonoses/metabolism
7.
ACS Appl Mater Interfaces ; 16(8): 11026-11034, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38361494

ABSTRACT

A Mo(S,Se)2 interfacial layer is formed inevitably and uncontrollably between the Mo electrode and Cu2ZnSn(S,Se)4 (CZTSSe) absorber during the selenization process, which significantly influences the performance of CZTSSe solar cells. In this work, an ultrathin MoS2 layer is intentionally inserted into Mo/CZTSSe to reduce the recombination and thus optimize the interface quality. It is revealed that the absorber exhibits a continuous and compact morphology with bigger grains and remarkably without pinholes across the surface or cross-sectional regions after MoS2 modification. Benefitting from this, the shunt resistance (RSh) of the device increased evidently from ∼395 to ∼634 Ω·cm2, and simultaneously, the reverse saturation current density (J0) realized an effective depression. As a result, the power conversion efficiency (PCE) of the MoS2-modified device reaches 9.64% via the optimization of the thickness of the MoS2 layer, indicating performance improvements with respect to the MoS2-free case. Furthermore, the main contribution to the performance improvement is derived and analyzed in detail from the increased RSh, decreased J0, and diode ideality factor. Our results suggest that the Mo/CZTSSe interface quality and performance of CZTSSe solar cells can be modulated and improved by appropriately designing and optimizing the thickness of the inserted MoS2 layer.

8.
Heliyon ; 10(4): e25643, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420434

ABSTRACT

Background: Lysosomes are known to have a significant impact on the development and recurrence of breast cancer. However, the association between lysosome-related genes (LRGs) and breast cancer remains unclear. This study aims to explore the potential role of LRGs in predicting the prognosis and treatment response of breast cancer. Methods: Breast cancer gene expression profile data and clinical information were downloaded from TCGA and GEO databases, and prognosis-related LRGs were screened for consensus clustering analysis. Lasso Cox regression analysis was used to construct risk features derived from LRGs, and immune cell infiltration, immune therapy response, drug sensitivity, and clinical pathological feature differences were evaluated for different molecular subtypes and risk groups. A nomogram based on risk features derived from LRGs was constructed and evaluated. Results: Our study identified 176 differentially expressed LRGs that are associated with breast cancer prognosis. Based on these genes, we divided breast cancer into two molecular subtypes with significant prognostic differences. We also found significant differences in immune cell infiltration between these subtypes. Furthermore, we constructed a prognostic risk model consisting of 7 LRGs, which effectively divides breast cancer patients into high-risk and low-risk groups. Patients in the low-risk group have better prognostic characteristics, respond better to immunotherapy, and have lower sensitivity to chemotherapy drugs, indicating that the low-risk group is more likely to benefit from immunotherapy and chemotherapy. Additionally, the risk score based on LRGs is significantly correlated with immune cell infiltration, including CD8 T cells and macrophages. This risk score model, along with age, chemotherapy, clinical stage, and N stage, is an independent prognostic factor for breast cancer. Finally, the nomogram composed of these factors has excellent performance in predicting overall survival of breast cancer. Conclusions: In conclusion, this study has constructed a novel LRG-derived breast cancer risk feature, which performs well in prognostic prediction when combined with clinical pathological features.

9.
Carbohydr Polym ; 331: 121886, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38388040

ABSTRACT

The use of natural starch as a replacement for petroleum-based packaging materials is limited due to its poor processability, weak mechanical properties, and strong moisture sensitivity. To address these limitations, this study adopts molecular design of hydroxypropylation and acetylation to sequentially modify natural starch, and material design of introducing acetylated cellulose nanofibers (ACNF) into the starch matrix to reinforce the material. Hydroxypropylation decreased the interaction force between the starch molecular chains, thereby reducing the glass transition temperature. Subsequent acetylation introduced hydrophobic acetyl groups that disrupted intermolecular hydrogen bonds, enhancing the mobility of the starch molecular chain, and endowed the hydroxypropyl starch acetate (HPSA) with excellent thermoplastic processability (melt index of 7.12 g/10 min) without the need for plasticizers and notable water resistance (water absorption rate of 3.0 %). The introduction of ACNF generated a strong interaction between HPSA chains, promoting the derived ACNF-HPSA to exhibit excellent mechanical strength, such as high impact strength of 2.1 kJ/m2, tensile strength of 22.89 MPa, elasticity modulus of 813.22 MPa, flexural strength of 24.18 MPa and flexural modulus of 1367.88 MPa. Its overall performance even surpassed that of polypropylene (PP) plastic, making it a potential alternative material for PP-based packaging materials.

10.
Polymers (Basel) ; 16(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201817

ABSTRACT

Under a global carbon-neutralizing environment, renewable wood is a viable alternative to non-renewable resources due to its abundance and high specific strength. However, fast-growing wood is hard to be applied extensively due to low mechanical strength and poor dimensional stability and durability. In this study, epoxy-acrylic resin-modified wood was prepared by forming a functional monomer system with three monomers [glycidyl methacrylate (GMA), maleic anhydride (MAN), and polyethylene glycol-200-dimethylacrylic acid (PEGDMA)] and filling into the wood cell cavity. The results showed that in the case of an optimal monomer system of nGMA:nPEGDMA = 20:1 and an optimal MAN dosage of 6%, the conversion rate of monomers reached 98.01%, the cell cavity was evenly filled by the polymer, with the cell wall chemically bonded. Thus, a bonding strength of as high as 1.13 MPa, a bending strength of 112.6 MPa and an impact toughness of 74.85 KJ/m2 were applied to the modified wood, which presented excellent dimensional stability (720 h water absorption: 26%, and volume expansion ratio: 5.04%) and rot resistance (loss rates from white rot and brown rot: 3.05% and 0.67%). Additionally, polymer-modified wood also exhibited excellent wear resistance and heat stability. This study reports a novel approach for building new environmentally friendly wood with high strength and toughness and good structural stability and durability.

11.
J Colloid Interface Sci ; 657: 240-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38039884

ABSTRACT

An electrocatalyst of single-atomic Mn sites with MnP nanoparticles (NPs) on N, P co-doped carbon substrate was constructed to enhance the catalytic activity of oxygen reduction reaction (ORR) through one-pot in situ doping-phosphatization strategy. The optimized MnSA-MnP-980℃ catalyst exhibits an excellent ORR activity in KOH electrolyte with a half-wave potential (E1/2) of 0.88 V (vs. RHE), and the ORR current density of MnSA-MnP-980℃ maintained 97.9 % for over 25000 s chronoamperometric i-t measurement. When using as the cathode, the MnSA-MnP-980℃ displays a peak power density of 51 mW cm-2 in Zinc-Air batteries, which observably outperformed commercial Pt/C (20 wt%). The X-ray photoelectron spectroscopy reveal that the doped P atoms with a strong electron-donating effectively enhances electron cloud density of Mn SAs sites, facilitating the adsorption of O2 molecules. Meanwhile, the introduction of MnP NPs can regulate the electronic structure of Mn SAs sites, making Mn SAs active sites exist in a low oxidation state and are less positively charged, which can supply electrons for ORR process to narrow the adsorption energy barrier of ORR intermediates. This work constructs novel active sites with excellent ORR properties and provides valuable reference for the development of practical application.

12.
Gene ; 891: 147799, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37739194

ABSTRACT

The insecticide dimethoate, an organophosphate, has been used on crops, soybeans, fruits, and vegetables since the 1960s and is considered one of the most widely used pesticides. However, the understanding of the molecular mechanisms of dimethoate in crops, especially crop seedlings, is still limited. The green vegetable soya bean (Glycine max merr) is usually used as a vegetable-like fruit of soybean in many Asian countries. This study aimed to analyze the effect of dimethoate on the growth of green vegetable soya bean seedlings at the metabolic and transcriptional levels. An integrated analysis of the transcriptome and metabolome was performed to determine the responses of green vegetable soya bean seedlings to different concentrations (D1 for low dose, D2 for high dose and C for control) of dimethoate. In omics analyses, 4156 differentially expressed genes (DEGs) and 1935 differentially abundant metabolites (DAMs) were identified in the D1/C comparison, and 11,162 DEGs and 819 DAMs were identified in D2/C. Correlation analyses revealed dimethoate affected the metabolic pathways of green vegetable soya beans such as the biosynthesis of secondary metabolites and microbial metabolism in diverse environmental pathways, demonstrating that even small doses of dimethoate can affect green vegetable soya bean seedlings in a short period of time. Our study further enriches our understanding of the molecular mechanisms by which green vegetable soya beans are treated with dimethoate and provides a deeper understanding of the effects of dimethoate on crops.


Subject(s)
Glycine max , Vegetables , Glycine max/genetics , Vegetables/genetics , Dimethoate/toxicity , Dimethoate/metabolism , Transcriptome , Seedlings/genetics , Seedlings/metabolism
13.
J Morphol ; 285(1): e21657, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100745

ABSTRACT

Studies of teleost teeth are important for understanding the evolution and mechanisms of tooth development, replacement, and regeneration. Here, we used gross specimens, microcomputed tomography, and histological analysis to characterize tooth structure, development, and resorption patterns in adult Pelteobagrus fulvidraco. The oral and pharyngeal teeth are villiform and conical. Multiple rows of dentition are densely distributed and the tooth germ is derived from the epithelium. P. fulvidraco exhibits a discontinuous and non-permanent dental lamina. Epithelial cells surround the teeth and are separated into distinct tooth units by mesenchymal tissue. Tooth development is completed in the form of independent tooth units. P. fulvidraco does not undergo simultaneous tooth replacement. Based on tooth development and resorption status, five forms of teeth are present in adult P. fulvidraco: developing tooth germs, accompanied by relatively immature tooth germs; mature and well-mineralized tooth accompanied by one tooth germ; teeth that have begun resorption, but not completely fractured; fractured teeth with only residual attachment to the underlying bone; and teeth that are completely resorbed and detached. Seven biological stages of a tooth in P. fulvidraco were also described.


Subject(s)
Catfishes , Tooth , Animals , Tooth/diagnostic imaging , X-Ray Microtomography , Odontogenesis , Tooth Germ/diagnostic imaging
14.
BMC Nephrol ; 24(1): 357, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049745

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, which has been a major cause of end-stage renal failure. Diagnosing diabetic kidney disease is important to prevent long-term kidney damage and determine the prognosis of patients with diabetes. In this study, we investigated the clinical significance of combined detection of urine orosomucoid and retinol-binding protein for early diagnosis of diabetic kidney disease. METHODS: We recruited 72 newly diagnosed patients with type 2 diabetes and 34 healthy persons from August 2016 to July 2018 at the First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital). Using the Mogensen grading criteria, participants were classified as having diabetes or diabetic kidney disease, and healthy persons constituted the control group. Urine orosomucoid and retinol-binding protein levels were measured and correlated with other variables. RESULTS: With the aggravation of renal damage, the level of urinary mucoid protein gradually increased. Urinary retinol-binding protein and microalbumin levels were significantly higher in the diabetes group than in control and nephropathy groups. Orosomucoid and retinol-binding protein might be independent risk factors for diabetes and diabetic kidney disease. Urinary orosomucoid significantly correlated with retinol-binding protein and microalbumin levels in the diabetic kidney disease group. CONCLUSION: Elevated urine orosomucoid and retinol-binding protein levels can be detected in the early stages of type 2 diabetic kidney disease. Both of these markers are important for diabetic kidney disease detection and early treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Orosomucoid/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Kidney , Retinol-Binding Proteins/urine , Biomarkers
15.
Opt Express ; 31(23): 37882-37891, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017908

ABSTRACT

Half-wave wall is the most common method of achieving electromagnetic (EM) transparency. Transmission windows can be formed when reflected waves are out of phase. Due to the interference mechanism, these windows are dependent on the frequency and incident angle of EM waves, leading to limited bandwidth, especially under extreme angles. In this letter, we propose to extend the bandwidth of the transmission window under extreme angles by utilizing dispersion. To this end, long metallic wires are embedded into the half-wave wall matrix, without increasing the physical thickness. Due to the plasma-like behavior of metallic wires under TE-polarization, the effective permittivity of the half-wave wall, rather than keeping constant, increases with frequency nonlinearly. Such a dispersion will boost wideband transparency in two aspects. On one hand, an additional transmission window will be generated where the effective permittivity equals that of the air; on the other hand, the 1st- and 2nd-order half-wave windows will be made quite closer. By tailoring the dispersion, the three windows can be merged to enable wideband transparency under extreme incident angles. A proof-of-principle prototype was designed, fabricated, and measured to verify this strategy. Both simulated and measured results show that the prototype can operate in the whole Ku-band under incident angle [70°, 85°] for TE-polarized waves. This work provides an effective method of achieving wideband EM transparency under extreme angles and may find applications in radar, communications, and others.

16.
Plants (Basel) ; 12(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687331

ABSTRACT

Due to the diversity of Echinochloa species and the limited understanding of their damage processes in rice fields, clarifying the biological properties of distinct species could help create a foundation for effective control techniques. Pot experiments and field competition trials were conducted using eight Echinochloa species to elucidate their biological differences and assess their varying levels of negative impact on rice. The survey outcomes showed that E. oryzoides had the highest 1000-grain weight (3.12 g) while E. colona had the lowest (0.90 g). The largest grain number per spikelet found in E. glabrescens (940) was 3.4 times greater than that in E. oryzoides (277). Different species responded variably to changes in temperature and photoperiod. Except for E. caudate, all Echinochloa species exhibited a shortened growth period with the delay of the sowing date. Under field competitive conditions, all Echinochloa species exhibited significantly greater net photosynthetic rates than rice, with E. crusgalli exhibiting the highest photosynthetic capacity. Moreover, in this resource-limited setting, barnyardgrass species had a decrease in tiller formation and panicle initiation but a significant increase in plant height. These findings contribute valuable insights into the biological characteristics of barnyardgrass populations and provide guidance for implementing effective control measures in rice fields.

17.
Proc Natl Acad Sci U S A ; 120(40): e2303878120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748061

ABSTRACT

AMPA receptors (AMPARs) play a critical role in synaptic plasticity and learning and memory, and dysfunction or dysregulation of AMPARs could lead to various neurological and psychiatric disorders, such as Alzheimer's disease (AD). However, the dynamics and/or longitudinal changes of AMPARs in vivo during AD pathogenesis remain elusive. Here, employing 5xFAD SEP-GluA1 KI mice, we investigated endogenous AMPA receptor dynamics in a whisker deflection-associated Go/No-go learning paradigm. We found a significant increase in synaptosomal AMPA receptor subunits GluA1 in WT mice after learning, while no such changes were detected in 7-mo-old 5xFAD mice. Daily training led to an increase in endogenous spine surface GluA1 in Control mice, while this increase was absent in 5xFAD-KI mice which correlates with its learning defects in Go/No-go paradigm. Furthermore, we demonstrated that the onset of abnormal AMPAR dynamics corresponds temporally with microglia and astrocyte overactivation. Our results have shown that impairments in endogenous AMPA receptor dynamics play an important role in learning deficits in 5xFAD mice and AD pathogenesis.


Subject(s)
Alzheimer Disease , Receptors, AMPA , Humans , Animals , Mice , Learning , Astrocytes , Microglia
18.
J Anim Sci Biotechnol ; 14(1): 104, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37563681

ABSTRACT

BACKGROUND: The tongue-rolling behaviour of cows is regarded as an outward sign of stressed animals in a low welfare status. The primary aim of this observational study was to evaluate the association between the frequency of tongue-rolling behaviour and its physiological function. The secondary aim was to explore the relationship between general activities and the frequency of tongue-rolling behaviour of cows. A total of 126 scan sampling behavioural observations were collected over 7 d on 348 Holstein cows with the same lactation stage in the same barn. The tongue-rolling frequency was defined as the number of tongue-rolling observations as a percentage to the total observations per individual cow. According to their tongue-rolling frequency, the cows were grouped into the CON (no tongue-rolling), LT (frequency 1%), MT (frequency 5%), and HT (frequency 10%) groups. Six cows from each group were randomly selected for sampling. Serum samples, rumen fluid, milk yield, and background information were collected. The general behaviour data during 72 continuous hours of dairy cows, including eating time, rumination time, food time (eating time + rumination time), and lying time, were recorded by the collar sensor. RESULTS: Cortisol (P = 0.012), γ-hydroxybutyric acid (P = 0.008), epinephrine (P = 0.030), and dopamine (P = 0.047) levels were significantly higher in tongue-rolling groups than in the CON group. Cortisol levels and tongue-rolling frequency had a moderate positive correlation (linearly r = 0.363). With the increase in tongue-rolling frequency, the rumen pH decreased first and then increased (P = 0.013), comparing to the CON group. HT cows had significantly less food time than CON cows (P = 0.035). The frequency of tongue-rolling had a moderate negative relationship with rumination time (r = -0.384) and food time (r = -0.492). CONCLUSIONS: The tongue-rolling behaviour is considered as a passive coping mechanism, as the stress response in cows with high tongue-rolling frequency increased. Food intake and rumination activities were all closely related to the occurrence of tongue-rolling behaviour.

19.
Front Genet ; 14: 1077438, 2023.
Article in English | MEDLINE | ID: mdl-37533435

ABSTRACT

Background: Effects of hypertension, type 2 diabetes and obesity on Bell's palsy risk remains unclear. The aim of the study was to explore whether hypertension and these metabolic disorders promoted Bell's palsy at the genetic level. Methods: Genetic variants from genome-wide association studies for hypertension, type 2 diabetes, body mass index and several lipid metabolites were adopted as instrumental variables. Two-sample Mendelian randomization including IVW and MR-Egger was used to measure the genetic relationship between the exposures and Bell's palsy. Sensitivity analyses (i.e., Cochran's Q test, MR-Egger intercept test, "leave-one-SNP-out" analysis and funnel plot) were carried out to assess heterogeneity and horizontal pleiotropy. All statistical analyses were performed using R software. Results: Hypertension was significantly associated with the increased risk of Bell's palsy (IVW: OR = 2.291, 95%CI = 1.025-5.122, p = 0.043; MR-Egger: OR = 16.445, 95%CI = 1.377-196.414, p = 0.029). Increased level of LDL cholesterol might upexpectedly decrease the risk of the disease (IVW: OR = 0.805, 95%CI = 0.649-0.998, p = 0.048; MR-Egger: OR = 0.784, 95%CI = 0.573-1.074, p = 0.132). In addition, type 2 diabetes, body mass index and other lipid metabolites were not related to the risk of Bell's palsy. No heterogeneity and horizontal pleiotropy had been found. Conclusion: Hypertension might be a risk factor for Bell's palsy at the genetic level, and LDL cholesterol might reduce the risk of the disease. These findings (especially for LDL cholesterol) need to be validated by further studies.

20.
NPJ Regen Med ; 8(1): 38, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488125

ABSTRACT

Bone fusion of defect broken ends is the basis of the functional reconstruction of critical maxillofacial segmental bone defects. However, the currently available treatments do not easily achieve this goal. Therefore, this study aimed to fabricate 3D-printing titanium grid scaffolds, which possess sufficient pores and basic biomechanical strength to facilitate osteogenesis in order to accomplish bone fusion in mandibular segmental bone defects. The clinical trial was approved and supervised by the Medical Ethics Committee of the Chinese PLA General Hospital on March 28th, 2019 (Beijing, China. approval No. S2019-065-01), and registered in the clinical trials registry platform (registration number: ChiCTR2300072209). Titanium grid scaffolds were manufactured using selective laser melting and implanted in 20 beagle dogs with mandibular segmental defects. Half of the animals were treated with autologous bone chips and bone substances incorporated into the scaffolds; no additional filling was used for the rest of the animals. After 18 months of observation, radiological scanning and histological analysis in canine models revealed that the pores of regenerated bone were filled with titanium grid scaffolds and bone broken ends were integrated. Furthermore, three patients were treated with similar titanium grid scaffold implants in mandibular segmental defects; no mechanical complications were observed, and similar bone regeneration was observed in the reconstructed patients' mandibles in the clinic. These results demonstrated that 3D-printing titanium grid scaffolds with sufficient pores and basic biomechanical strength could facilitate bone regeneration in large-segment mandibular bone defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...