Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(10): 3171-3187, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38400756

ABSTRACT

Salt stress is a common abiotic factor that restricts plant growth and development. As a halophyte, Tamarix hispida is a good model plant for exploring salt-tolerance genes and regulatory mechanisms. DNA-binding with one finger (DOF) is an important transcription factor (TF) that influences and controls various signaling substances involved in diverse biological processes related to plant growth and development, but the regulatory mechanisms of DOF TFs in response to salt stress are largely unknown in T. hispida. In the present study, a newly identified Dof gene, ThDOF8, was cloned from T. hispida, and its expression was found to be induced by salt stress. Transient overexpression of ThDOF8 enhanced T. hispida salt tolerance by enhancing proline levels, and increasing the activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). These results were also verified in stably transformed Arabidopsis. Results from TF-centered yeast one-hybrid (Y1H) assays and EMSAs showed that ThDOF8 binds to a newly identified cis-element (TGCG). Expression profiling by gene chip analysis identified four potential direct targets of ThDOF8, namely the cysteine-rich receptor-like kinases genes, CRK10 and CRK26, and two glutamate decarboxylase genes, GAD41, and GAD42, and these were further verified by ChIP-quantitative-PCR, EMSAs, Y1H assays, and ß-glucuronidase enzyme activity assays. ThDOF8 can bind to the TGCG element in the promoter regions of its target genes, and transient overexpression of ThCRK10 also enhanced T. hispida salt tolerance. On the basis of our results, we propose a new regulatory mechanism model, in which ThDOF8 binds to the TGCG cis-element in the promoter of the target gene CRK10 to regulate its expression and improve salt tolerance in T. hispida. This study provides a basis for furthering our understanding the role of DOF TFs and identifying other downstream candidate genes that have the potential for improving plant salt tolerance via molecular breeding.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Tamaricaceae , Transcription Factors , Tamaricaceae/genetics , Tamaricaceae/metabolism , Tamaricaceae/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Salt Stress/genetics , Salt Tolerance/genetics
2.
Org Lett ; 26(8): 1601-1606, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38373161

ABSTRACT

An enantioselective difunctionalization of activated alkynes using chiral sulfinamide reagents is developed. It is an atom and chirality transfer process that allows for the modular synthesis of optically active α-amino acid derivatives under mild conditions. The reaction proceeds through an acid-catalyzed [2,3]-sigmatropic rearrangement mechanism with predictable stereochemistry and a broad scope.

3.
Proc Natl Acad Sci U S A ; 120(23): e2301118120, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37252984

ABSTRACT

For organic photovoltaic (OPV) devices to achieve consistent performance and long operational lifetimes, organic semiconductors must be processed with precise control over their purity, composition, and structure. This is particularly important for high volume solar cell manufacturing where control of materials quality has a direct impact on yield and cost. Ternary-blend OPVs containing two acceptor-donor-acceptor (A-D-A)-type nonfullerene acceptors (NFAs) and a donor have proven to be an effective strategy to improve solar spectral coverage and reduce energy losses beyond that of binary-blend OPVs. Here, we show that the purity of such a ternary is compromised during blending to form a homogeneously mixed bulk heterojunction thin film. We find that the impurities originate from end-capping C=C/C=C exchange reactions of A-D-A-type NFAs, and that their presence influences both device reproducibility and long-term reliability. The end-capping exchange results in generation of up to four impurity constituents with strong dipolar character that interfere with the photoinduced charge transfer process, leading to reduced charge generation efficiency, morphological instabilities, and an increased vulnerability to photodegradation. As a consequence, the OPV efficiency falls to less than 65% of its initial value within 265 h when exposed to up to 10 suns intensity illumination. We propose potential molecular design strategies critical to enhancing the reproducibility as well as reliability of ternary OPVs by avoiding end-capping reactions.

4.
Adv Mater ; 35(12): e2210794, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638153

ABSTRACT

Mixing a sterically bulky, electron-transporting host material into a conventional single host-guest emissive layer is demonstrated to suppress phase separation of the host matrix while increasing the efficiency and operational lifetime of deep-blue phosphorescent organic light-emitting diodes (PHOLEDs) with chromaticity coordinates of (0.14, 0.15). The bulky host enables homogenous mixing of the molecules comprising the emissive layer while suppressing single host aggregation; a significant loss channel of nonradiative recombination. By controlling the amorphous phase of the host-matrix morphology, the mixed-host device achieves a significant reduction in nonradiative exciton decay, resulting in 120 ± 6% increase in external quantum efficiency relative to an analogous, single-host device. In contrast to single host PHOLEDs where electrons are transported by the host and holes by the dopants, both charge carriers are conducted by the mixed host, reducing the probability of exciton annihilation, thereby doubling of the deep-blue PHOLED operational lifetime. These findings demonstrate that the host matrix morphology affects almost every aspect of PHOLED performance.

5.
ACS Appl Mater Interfaces ; 14(4): 5692-5698, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35061350

ABSTRACT

The thermal stability of inverted, halogen-rich non-fullerene acceptor (NFA)-based organic photovoltaics with MoOx as the hole transporting layer is studied at temperatures up to 80 °C. Over time, the power conversion efficiency shows a "check-mark" shaped thermal aging pattern, featuring an early decrease, followed by a long-term recovery. A high Cl concentration at the bulk heterojunction (BHJ)/MoOx interface in the thermally aged device is found using energy dispersive X-ray spectroscopy. X-ray photoelectron spectroscopy shows that the MoOx is chlorinated after thermal aging. With bulk quantum efficiency analysis, we propose an explanation to the check-mark shaped pattern. Inserting a thin C70 layer between the BHJ and MoOx suppresses the thermal degradation mechanisms, resulting in three orders of magnitude increase in device lifetime at 80 °C.

6.
Nat Commun ; 12(1): 5419, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521842

ABSTRACT

Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.

7.
J Phys Chem Lett ; 12(13): 3410-3416, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33788566

ABSTRACT

Organic photovoltaics (OPVs) based on nonfullerene acceptors are now approaching commercially viable efficiencies. One key to their success is efficient charge separation with low potential loss at the donor-acceptor heterojunction. Due to the lack of spectroscopic probes, open questions remain about the mechanisms of charge separation. Here, we study charge separation of a model system composed of the donor, poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione) (PBDB-T), and the nonfullerene acceptor, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC), using multidimensional spectroscopy spanning the visible to the mid-infrared. We find that bound polaron pairs (BPPs) generated within ITIC domains play a dominant role in efficient hole transfer, transitioning to delocalized polarons within 100 fs. The weak electron-hole binding within the BPPs and the resulting polaron delocalization are key factors for efficient charge separation at nearly zero driving force. Our work provides useful insight into how to further improve the power conversion efficiency in OPVs.

8.
Opt Express ; 29(4): 5236-5246, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726063

ABSTRACT

A novel, compact, and easy fabrication vector magnetic field sensor has been proposed and investigated. The proposed sensor consists of a U-bent single-mode fiber fixed in a magnetic-fluid-filled vessel. Neither mechanical modification nor additional fiber grating is needed during the sensor fabrication. The results show that the response of magnetic fluid to magnetic field can be used to measure the direction and intensity of magnetic field via whispering gallery modes supported by the U-bent fiber structure with suitable bending radius. The sensitivity of direction is 0.251 nm/°, and the maximum magnetic field intensity sensitivity is 0.517 nm/mT. Besides, the results of this work prove the feasibility for realizing vector magnetic sensors based on other bending structures (such as bending multimode interference, bending SPR structure) in the future.

9.
Mitochondrial DNA B Resour ; 6(2): 437-438, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33628881

ABSTRACT

Thalictrum baicalense Turcz. ex Ledeb. is a well-known herbaceous perennid that has been used as a traditional medicine to treat influenza, hepatitis, and detoxfeaction. In this study, we release and detail the complete chloroplast genome sequences of T. baicalense. The whole chloroplast genome was 155,859 bp in length and comprised 130 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes. The T. baicalense chloroplast genome had a GC content of 38.39%. The phylogenetic relationships inferred that T. baicalense, T. tenue, T. minus and T. petaloideum are closely related to each other within the genus Thalictrum.

10.
Front Immunol ; 12: 810290, 2021.
Article in English | MEDLINE | ID: mdl-35082796

ABSTRACT

Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein-protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.


Subject(s)
Disease Susceptibility , Fibroblasts/metabolism , Immunity , Inflammation/complications , Inflammation/etiology , Keloid/etiology , Keloid/metabolism , Computational Biology/methods , Fibrosis , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunity/genetics , Inflammation/metabolism , Keloid/pathology , Protein Interaction Mapping/methods , Protein Interaction Maps , Signal Transduction , Transcriptome
11.
Oncol Lett ; 20(4): 121, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32863934

ABSTRACT

Melanoma is a common solid malignant tumor with a high frequency of metastasis and relapse. Evodiamine (EVO), a natural small molecule, has recently attracted considerable attention due to its pharmacological action, including its anticancer effects. However, the mechanism of the cytotoxic effect exerted by EVO on tumor cells is not yet fully understood. The present study aimed to evaluate the antitumor effects of evodiamine in human melanoma A-375 cells. The results demonstrated that EVO inhibited cell proliferation and induced cell cycle arrest at the G2/M stage in human melanoma A-375 cells. The results also revealed that EVO exposure induced the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase 1, as well as mitochondrial membrane potential dissipation in a time-dependent manner, indicating that EVO induced intrinsic apoptosis in A-375 cells. Furthermore, the results revealed that receptor-interacting serine/threonine kinase (RIP) and RIP3 were sequentially activated, suggesting that necroptosis may also be involved in EVO-induced cell death in A-375 cells. In addition, co-treatment with catalase was demonstrated to significantly attenuate the EVO-induced cell death in A-375 cells, indicating that reactive oxygen species (ROS) may serve an important role in EVO-induced cell death. In conclusion, the results of the present study unveiled a novel mechanism of drug action by EVO in human melanoma cells and suggested its potential value in treating human melanoma by inducing cell death via ROS activation.

12.
Proc Natl Acad Sci U S A ; 117(35): 21147-21154, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817532

ABSTRACT

Semitransparent organic photovoltaic cells (ST-OPVs) are emerging as a solution for solar energy harvesting on building facades, rooftops, and windows. However, the trade-off between power-conversion efficiency (PCE) and the average photopic transmission (APT) in color-neutral devices limits their utility as attractive, power-generating windows. A color-neutral ST-OPV is demonstrated by using a transparent indium tin oxide (ITO) anode along with a narrow energy gap nonfullerene acceptor near-infrared (NIR) absorbing cell and outcoupling (OC) coatings on the exit surface. The device exhibits PCE = 8.1 ± 0.3% and APT = 43.3 ± 1.2% that combine to achieve a light-utilization efficiency of LUE = 3.5 ± 0.1%. Commission Internationale d'eclairage chromaticity coordinates of (0.38, 0.39), a color-rendering index of 86, and a correlated color temperature of 4,143 K are obtained for simulated AM1.5 illumination transmitted through the cell. Using an ultrathin metal anode in place of ITO, we demonstrate a slightly green-tinted ST-OPV with PCE = 10.8 ± 0.5% and APT = 45.7 ± 2.1% yielding LUE = 5.0 ± 0.3% These results indicate that ST-OPVs can combine both efficiency and color neutrality in a single device.

13.
Opt Express ; 27(24): 35182-35188, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878691

ABSTRACT

A kind of compact all-fiber-optic vector magnetic sensor is proposed and demonstrated. The sensor consists of a side-polished-fiber (SPF)-integrated with singlemode-no core-singlemode (SNS) fiber structure. A section of side-polished fiber breaks the axially symmetry of the composite structure. The as-fabricated sensor supports vector sensing and has a magnetic field strength sensitivity of up to -2370 pm/mT over 2-6 mT range. The physical mechanism is that the modal interference is strongly influenced by the refractive index (RI) near the side-polished surface. The advantages of the proposed sensor lie in low cost, simple structure and easy manufacture, which make it attractive in the field of magnetic field vector sensing.

14.
J Am Chem Soc ; 141(45): 18204-18210, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31639297

ABSTRACT

Ternary blend organic photovoltaics (OPVs) have been introduced to improve solar spectral absorption and reduce energy losses beyond that of binary blend OPVs, but the difficulties in simultaneously optimizing the morphology of three molecular components result in devices that have generally exhibited performance inferior to that of analogous binary OPVs. Here, we introduce a small molecule-based biternary OPV comprising two individual, vacuum-deposited binary bulk heterojunctions fused at a planar junction without component intermixing. In contrast to previous reports where the open circuit voltage (VOC) of a conventional, blended ternary cell lies between those of the individual binaries, the VOC of the biternary OPV corresponds to one of the constituent binaries, depending on the order in which they are stacked relative to the anode. Additionally, dipole-induced energy-level realignment between the two binary segments necessary to achieve maximum efficiency is observed only when using donor-acceptor-acceptor' dipolar donors in the photoactive heterojunctions. The optimized biternary OPV shows improved performance as compared to its two constituent binary OPVs, achieving a power conversion efficiency of 10.6 ± 0.3% under AM 1.5G 1 sun (100 mW/cm2) simulated illumination with VOC = 0.94 ± 0.01 V, a short circuit current density of 16.0 ± 0.5 mA cm-2, and a fill factor of 0.70 ± 0.01.

15.
Adv Mater ; 31(40): e1903173, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31420924

ABSTRACT

Building-integrated photovoltaics employing transparent photovoltaic cells on window panes provide an opportunity to convert solar energy to electricity rather than generating waste heat. Semitransparent organic photovoltaic cells (ST-OPVs) that utilize a nonfullerene acceptor-based near-infrared (NIR) absorbing ternary cell combined with a thin, semitransparent, high conductivity Cu-Ag alloy electrode are demonstrated. A combination of optical outcoupling and antireflection coatings leads to enhanced visible transmission, while reflecting the NIR back into the cell where it is absorbed. This combination of coatings results in doubling of the light utilization efficiency (LUE), which is equal to the product of the power conversion efficiency (PCE) and the average photopic transparency, compared with a conventional semitransparent cell lacking these coatings. A maximum LUE = 3.56 ± 0.11% is achieved for an ST-OPV with a PCE = 8.0 ± 0.2% at 1 sun, reference AM1.5G spectrum. Moreover, neutral colored ST-OPVs are also demonstrated, with LUE = 2.56 ± 0.2%, along with Commission Internationale d'Eclairage chromaticity coordinates of CIE = (0.337, 0.349) and a color rendering index of CRI = 87.

16.
Neurobiol Aging ; 80: 210-222, 2019 08.
Article in English | MEDLINE | ID: mdl-31220650

ABSTRACT

Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.


Subject(s)
Cochlea/cytology , Cochlea/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Presbycusis/etiology , Aging , Animals , Humans , Mice, Inbred CBA , Spiral Ganglion/metabolism , Stria Vascularis
17.
Hamostaseologie ; 39(4): 392-397, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30849780

ABSTRACT

Platelets play a crucial role in haemostasis and several pathophysiological processes. Collagen is a main initiator for platelet activation and aggregation. Given that Wnt signalling negatively regulates platelet function, and IWR-1 (a small molecule inhibitor for Wnt signalling) has the potential of inhibiting collagen synthesis, it is essential to investigate whether IWR-1 regulates collagen-induced platelet activation and protects against thrombogenesis. In the present study we found that IWR-1 pretreatment effectively suppressed collagen-induced platelet aggregation in a dose-dependent manner. In addition, IWR-1 also resulted in a decrease of P-selectin and phosphatidylserine surface exposure using fluorescence-activated cell sorting analysis. In vitro studies further revealed that IWR-1 had a negative effect on integrin a2ß1 activation and platelet spreading. More importantly, the results from in vivo studies showed that IWR-1 exhibited a robust bleeding diathesis in the tail-bleeding assay and a prolonged occlusion time in the FeCl3-induced carotid injury model. Taken together, current results demonstrate that IWR-1 could effectively block collagen-induced platelet activity in vitro and in vivo, and suggest its candidacy as a new antiplatelet agent.


Subject(s)
Blood Platelets/drug effects , Collagen/metabolism , Imides/therapeutic use , Platelet Activation/drug effects , Quinolines/therapeutic use , Animals , Humans , Imides/pharmacology , Mice , Quinolines/pharmacology
18.
Exp Dermatol ; 28(3): 283-291, 2019 03.
Article in English | MEDLINE | ID: mdl-30664260

ABSTRACT

Psoriasis is a chronic inflammatory disease, and microRNAs have been reported to regulate the pathogenesis of psoriasis. Up-regulated miR-744-3p level was identified to associate with psoriasis while the precise functions of miR-744-3p in psoriasis were not well-elucidated. We first confirmed the up-regulation of miR-744-3p in psoriasis by measuring its expression level in psoriatic samples. We explored the roles of miR-744-3p on keratinocytes proliferation and differentiation. We searched the targets of miR-744-3p and evaluated the roles of one target, KLLN on keratinocytes proliferation and differentiation. We confirmed the up-regulation of miR-744-3p in psoriatic samples. MiR-744-3p promoted keratinocytes proliferation while inhibited differentiation. MiR-744-3p targeted KLLN and overexpression of miR-744-3p resulted in decreased expression of KLLN. Overexpression of KLLN prevented the effects of miR-744-3p on keratinocytes proliferation and differentiation. MiR-744-3p regulated the proliferation and differentiation of keratinocytes through targeting KLLN in psoriasis.


Subject(s)
Keratinocytes/cytology , MicroRNAs/genetics , Psoriasis/metabolism , Tumor Suppressor Proteins/metabolism , Apoptosis , Biopsy , Cell Differentiation , Cell Line , Cell Proliferation , Down-Regulation , Gene Expression Regulation , Humans , Keratinocytes/metabolism , Skin/metabolism , Transcriptional Activation , Up-Regulation
19.
Biomed Pharmacother ; 109: 2409-2414, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551500

ABSTRACT

Macrophages' function play a vital role in the progression of atherosclerosis (AS), and miRNAs can modulate inflammatory cytokine secretion, lipid uptake and apoptosis of macrophages. miR-152 is down-regulated in the serum samples of AS patients and inhibits the migration of human umbilical vein endothelial cell, suggesting that miR-152 exerts a role in the atherogenesis. Nevertheless, the function of miR-152 in the inflammatory reaction of macrophages remains unexplored. Besides, bioinformatics shows that KLF5 is a direct target of miR-152. As a result, the objective of this study is to investigate the effects and mechanism of miR-152/KLF5 in the inflammatory reaction of macrophages. ApoE knockdown mouse (ApoE-/-) fed with high fat diet (HFD) was used as animal AS models. Ox-LDL treated RAW264.7 cell was used as cell model. Results showed that miR-152 expression was reduced, while KLF5 expression was elevated in the aortic tissues of AS mice, as compared with that of the control mice. Up-regulation of miR-152 significantly reduced the elevated expression of IL-1, IL-6 and TNF-α mediated by ox-LDL in the cultural supernatant of RAW264.7 cells and reduced ß-catenin expression, whereas these effects were all neutralized when KLF5 was up-regulated in the base of miR-152 up-regulation. In conclusion, this study illustrates that miR-152 alleviates the pathogenesis of AS through inhibiting inflammatory responses by targeting KLF5, in which ß-catenin might involves in. Our study provides a possibility of consideration of miR-152/KLF5 as a target for AS treatment.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Progression , Down-Regulation/physiology , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/biosynthesis , Animals , Atherosclerosis/prevention & control , Kruppel-Like Transcription Factors/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
20.
Adv Mater ; 30(45): e1804416, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30276881

ABSTRACT

The paucity of near-infrared (NIR) organic materials with high absorption at long wavelengths, combined with large diffusion lengths and charge mobilities, is an impediment to progress in achieving high-efficiency organic tandem solar cells. Here a subcell is employed within a series tandem stack that comprises a solution-processed ternary blend of two NIR-absorbing nonfullerene acceptors and a polymer donor combined with a small-molecular-weight, short-wavelength fullerene-based subcell grown by vacuum thermal evaporation. The ternary cell achieves a power conversion efficiency of 12.6 ± 0.3% with a short-circuit current of 25.5 ± 0.3 mA cm-2 , an open-circuit voltage of 0.69 ± 0.01 V, and a fill factor of 0.71 ± 0.01 under 1 sun, AM 1.5G spectral illumination. The success of this device is a result of the nearly identical offset energies between the lowest unoccupied molecular orbitals (LUMOs) of the donors with the highest occupied molecular orbital (HOMO) of the acceptor, resulting in a high open-circuit voltage. A tandem structure with an antireflection coating combining these subcells demonstrates a power conversion efficiency of 15.4 ± 0.3%.

SELECTION OF CITATIONS
SEARCH DETAIL
...