Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
FASEB J ; 38(9): e23645, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703043

ABSTRACT

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Subject(s)
Aortic Dissection , Chemokine CX3CL1 , Mice, Inbred C57BL , Pentacyclic Triterpenes , Signal Transduction , Transcription Factor RelA , Vascular Remodeling , Animals , Mice , Male , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/drug therapy , Pentacyclic Triterpenes/pharmacology , Vascular Remodeling/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aminopropionitrile/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
2.
Blood ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574321

ABSTRACT

Platelet α-granules are rich in TGF-ß1 which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and re-balancing T cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-ß/Smad pathways in TPO-RA-corrected-MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-ß1-deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that ITP patients achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-ß1 induces the expansion and functional reprogramming of MDSCs via the TGF-ß/Smad pathway. These data indicate that platelet recovery not only serves as an endpoint of treatment response, but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.

3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673879

ABSTRACT

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Subject(s)
Astrocytes , Glutamic Acid , Kynurenine , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Mice , Kynurenine/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/toxicity , Signal Transduction/drug effects , Mice, Knockout , Probenecid/pharmacology , Mice, Inbred C57BL , Male , Brain/metabolism , Brain/pathology , Brain/drug effects , NF-kappa B/metabolism
4.
Anal Chim Acta ; 1299: 342406, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38499412

ABSTRACT

The hybridization chain reaction (HCR), as one of the nucleic acid amplification technologies, is combined with fluorescence signal output with excellent sensitivity, simplicity, and stability. However, current HCR-based fluorescence sensing methods still have some defects such as the blocking effect of the HCR combination with fluorophores and the aggregation-caused quenching (ACQ) phenomenon of traditional fluorophores. Herein, a triplex DNA-based aggregation-induced emission probe (AIE-P) was designed as the fluorescent signal transduction, which is able to provide a new platform for HCR-based sensing assay. The AIE-P was synthesized by attaching the AIE fluorophores to terminus of the oligonucleotide through amido bond, and captured the products of HCR to form triplex DNA. In this case, the AIE fluorophores were located in close proximity to generate fluorescence. This assay provided turn-on fluorescence efficiency with a high signal-to-noise ratio and excellent amplification capability to solve the shortcoming of HCR-based fluorescence sensing methods. It enabled sensitive detection of Vibrio parahaemolyticus in the range of 102-106 CFU mL-1, and with a low limit of detection down to 39 CFU mL-1. In addition, this assay expressed good specificity and practicability. The triplex DNA-based AIE probe forms a universal molecular tool for developing HCR-based fluorescence sensing methods.


Subject(s)
Biosensing Techniques , DNA , DNA/genetics , DNA/chemistry , Nucleic Acid Hybridization/methods , Fluorescent Dyes/chemistry , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , Limit of Detection
5.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332049

ABSTRACT

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Subject(s)
Homeostasis , PPAR gamma , Sirtuin 1 , Animals , PPAR gamma/metabolism , Mice , Sirtuin 1/metabolism , Sirtuin 1/genetics , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Mice, Inbred C57BL , Humans , Obesity/metabolism , Obesity/pathology , Transcription Factors/metabolism , Diet, High-Fat , Male , Adipose Tissue, Brown/metabolism , Thermogenesis , Mannose/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adipose Tissue, White/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism
6.
Cell Rep ; 43(2): 113787, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363681

ABSTRACT

The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPß) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPß ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPß DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPß to prevent spontaneous BMN migration and tumor progression.


Subject(s)
Carcinoma, Lewis Lung , Neutrophils , Mice , Animals , Humans , Neutrophils/metabolism , Cytokines/metabolism , Lung/metabolism
7.
Environ Toxicol ; 39(5): 3172-3187, 2024 May.
Article in English | MEDLINE | ID: mdl-38348599

ABSTRACT

OBJECTIVE: Scutellaria baicalensis (SB) and Polygonatum Rhizoma (PR), two traditional Chinese medicines, are both known to suppress cancer. However, the mechanism and effect of combined treatment of them for lung cancer are rarely known. Investigating the combined effect of SB and PR (hereafter referred to as SP) in potential mechanism of lung cancer is required. This study was to evaluate the inhibitory effects of SP on A549 cell growth and to explore the underlying molecular mechanisms. METHODS: According to the theory of Chinese medicine and network pharmacology, in the in vivo experiment, a mouse model of carcinoma in situ was constructed, and lung carcinoma in situ tissues were collected for proteomics analysis, hematoxylin-eosin staining, and CK19 immunohistochemistry. In the in vitro experiment, lung cancer A549 cells at logarithmic growth stage were taken, and the inhibitory effect of SP on the proliferation of A549 cells was detected by CCK8 method. The expression of PON3 was detected by quantitative polymerase chain reaction and western blot. In addition, the effect of SP on the induction of apoptosis in A549 cells and the changes of membrane potential and reactive oxygen species (ROS) content were detected by flow cytometry. The changes of PON3 content in endoplasmic reticulum (ER) are observed by laser confocal microscopy, whereas the effects of SP on the expression of apoptosis-related proteins and ER stress-related proteins in A549 cells were examined by western blot. RESULT: By searching the Traditional Chinese Medicines of Systems Pharmacology (TCMSP) (https://www.tcmspe.com/index.php) database and SymMap database, the respective target genes of PR and SB were mapped into protein network interactions, and using Venn diagrams to show 38 genes in common between PR and SB and lung cancer, SP was found to play a role in the treatment of lung cancer. In vivo experiments showed that in a lung carcinoma in situ model, lung tumor tissue was significantly lower in the SP group compared with the control group, and PON3 was shown to be downregulated by lung tissue proteomics analysis. The combination of SP was able to inhibit the proliferation of A549 cells in a concentration-dependent manner (p < .0001). The expression levels of apoptosis-related proteins and ER stress proteins were significantly increased and the expression levels of PON3 and anti-apoptosis-related proteins were decreased in A549 cells. At the same time, knockdown of PON3 could inhibit tumor cell proliferation (p < .0001). The combination of different concentrations of SP significantly induced apoptosis in A549 cells (p < .05; p < .0001), increased ROS content (p < .01), and damaged mitochondrial membrane potential of A549 cells (p < .05; p < .0001), and significantly increased the expression levels of apoptosis-related proteins and ER stress proteins in lung cancer A549 cells. CONCLUSION: SP inhibits proliferation of lung cancer A549 cells by downregulating PON3-induced apoptosis in the mitochondrial and ER pathways.


Subject(s)
Carcinoma in Situ , Lung Neoplasms , Polygonatum , Animals , Mice , Humans , A549 Cells , Polygonatum/metabolism , Scutellaria baicalensis/metabolism , Reactive Oxygen Species/metabolism , Down-Regulation , Lung Neoplasms/pathology , Apoptosis , Cell Proliferation , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Cell Line, Tumor
8.
Curr Med Chem ; 31(10): 1278-1288, 2024.
Article in English | MEDLINE | ID: mdl-37526186

ABSTRACT

OBJECTIVE: [18F] AV-45 can be produced in a simple, stable, and repeatable manner on the Tracerlab FXF-N platform using a self-editing synthetic procedure and solid-phase extraction purification method. This technique is applied to positron emission tomography (PET) imaging of Alzheimer's disease (AD) to observe its distribution and characteristics in various brain regions and its diagnostic efficiency for the disease. METHODS: The precursor was subjected to nucleophilic radiofluorination at 120°C in anhydrous dimethyl sulfoxide, followed by acid hydrolysis of the protecting groups. The neutralized reaction mixture was purified by solid phase extraction to obtain a relatively pure [18F] AV-45 product with a high specific activity. A total of 10 participants who were diagnosed with Alzheimer's disease (AD group) and 10 healthy controls (HC group) were included retrospectively. All of them underwent [18F] AV-45 brain PET/CT imaging. The distribution of [18F] AV-45 in the AD group was analyzed visually and semi-quantitatively. RESULTS: Six consecutive radiochemical syntheses were performed in this experiment. The average production time of [18F] AV-45 was 52 minutes, the radiochemical yield was 14.2 % ± 2.7% (n = 6), and the radiochemical purity was greater than 95%. When used with PET/CT imaging, the results of the visual analysis indicated increased [18F] AV-45 radioactivity uptake in the frontal, temporal, and parietal lobes in AD patients. Semiquantitative analysis showed the highest diagnostic efficacy in the posterior cingulate gyrus compared with other brain regions (P < 0.001). CONCLUSION: Intravenous [18F] AV-45 was successfully prepared on the Tracerlab FXF-N platform by solid-phase extraction of crude product and automated radiochemical synthesis. PET/CT imaging can be used to diagnose and evaluate AD patients and provide a more robust basis for clinicians to diagnose AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Positron Emission Tomography Computed Tomography , Retrospective Studies , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Radiopharmaceuticals
9.
Clin Chim Acta ; 553: 117734, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128818

ABSTRACT

BACKGROUND: Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a promising stroke biomarker. However, a large study of human serum ASC has not yet to be reported; additionally, the diagnostic value of prehospital concentration and practicality of ASC remains unknown. METHODS: We recruited 774 Chinese stroke patients, including 523 with ischemic stroke (IS) and 251 with hemorrhagic stroke (HS) within 14 days following symptom onset in the emergency department, alongside 481 healthy individuals and 64 cognitive impairment patients as controls. Serum ASC concentrations were determined using automated chemiluminescence immunoassay, exploring the relationship between serum ASC concentration and subtypes, severity, and sampling timepoints of stroke. RESULTS: ASC concentrations were significantly higher in stroke patients compared with all controls (P < 0.001). HS patients had greater ASC concentrations than IS patients (P < 0.05). With increasing ASC concentration, the proportion of severe cases increased. The area under the receiver operating characteristic curve (AUC) for differentiating between healthy individuals and stroke patients in the hyperacute phase was 0.78; this markedly improved (0.90) when considering samples from healthy individuals and patients with subarachnoid hemorrhage (SAH) ≤ 3  h from last-known-well (LKW). CONCLUSIONS: Serum ASC is a valuable biomarker for stroke differentiation and aids in the clinical diagnosis of stroke severity and subtypes.


Subject(s)
CARD Signaling Adaptor Proteins , Stroke , Humans , Apoptosis , Biomarkers , Caspases , Stroke/diagnosis
10.
iScience ; 26(11): 108355, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026219

ABSTRACT

Spirulina, an herbal supplement and popular ingredient in health foods, is a potent stimulant of the immune system. Spirulina use is temporally associated with the onset or exacerbation of Dermatomyositis (DM), an autoimmune connective tissue disease that frequently affects the skin and muscle. In this study, we investigated the effect of Spirulina on peripheral blood mononuclear cells (PBMCs) in DM and Healthy Controls (HCs), showing that Spirulina stimulates Interferon ß (IFNß), Tumor necrosis factor α (TNFα), and Interferon γ (IFNγ) production of DM PBMCs primarily via Toll-Like Receptor 4 (TLR4) activation using ELISA (enzyme linked immunosorbent assay) and flow cytometry. We show that classical monocytes and monocyte-derived dendritic cells are stimulated by Spirulina and are activated via TLR4. Skin from patients with Spirulina-associated DM exhibits an inflammatory milieu similar to that of idiopathic DM but with a stronger correlation of TLR4 and IFNγ.

11.
Transl Psychiatry ; 13(1): 338, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914710

ABSTRACT

The potentiation of synaptic plasticity and serotonin generation by brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (TPH2) is well characterized to facilitate rapid and long-lasting antidepressant actions. Therefore, the identification of the key protein that simultaneously controls both BDNF and TPH2 is important for the treatment of depression. We show here that a lack of acetyl-CoA synthetase short-chain family member 2 (ACSS2) causes impairments in BDNF-dependent synaptic plasticity and tryptophan hydroxylase 2 (TPH2)-mediated serotonin generation, thereby contributing to spontaneous and chronic restraint stress (CRS)-induced depressive-like behavior in mice. Conversely, D-mannose is identified as a rapid ACSS2 inducer and thus mediates rapid and long-lasting antidepressant-like effects. Mechanistically, acute and chronic D-mannose administration inhibits the phosphorylation of EF2 to increase BDNF levels and reverse the reduction of TPH2 histone acetylation and transcription. We reveal that ACSS2 promotes TPH2 histone acetylation and transcription with the requirement of AMPK activation. To elevate nuclear ACSS2 levels, D-mannose can rapidly and persistently activate AMPK via Ca2+-CAMKK2 and the lysosomal AXIN-LKB1 pathway to facilitate its fast-acting and persistent antidepressant responses. Taken together, the results presented here reveal that ACSS2 functions as a novel target to link rapid and persistent antidepressant actions and further suggest that D-mannose is a potential therapeutic agent to resist depression through its augmentation of the ACSS2 dependent BDNF and TPH2 pathways.


Subject(s)
Brain-Derived Neurotrophic Factor , Histones , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Mannose , Serotonin/metabolism , Tryptophan Hydroxylase , AMP-Activated Protein Kinases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
12.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004905

ABSTRACT

To give consideration to both chip density and device performance, an In0.53Ga0.47As vertical electron-hole bilayer tunnel field effect transistor (EHBTFET) with a P+-pocket and an In0.52Al0.48As-block (VPB-EHBTFET) is introduced and systematically studied by TCAD simulation. The introduction of the P+-pocket can reduce the line tunneling distance, thereby enhancing the on-state current. This can also effectively address the challenge of forming a hole inversion layer in an undoped InGaAs channel during device fabrication. Moreover, the point tunneling can be significantly suppressed by the In0.52Al0.48As-block, resulting in a substantial decrease in the off-state current. By optimizing the width and doping concentration of the P+-pocket as well as the length and width of the In0.52Al0.48As-block, VPB-EHBTFET can obtain an off-state current of 1.83 × 10-19 A/µm, on-state current of 1.04 × 10-4 A/µm, and an average subthreshold swing of 5.5 mV/dec. Compared with traditional InGaAs vertical EHBTFET, the proposed VPB-EHBTFET has a three orders of magnitude decrease in the off-state current, about six times increase in the on-state current, 81.8% reduction in the average subthreshold swing, and stronger inhibitory ability on the drain-induced barrier-lowering effect (7.5 mV/V); these benefits enhance the practical application of EHBTFETs.

14.
Cytokine ; 172: 156400, 2023 12.
Article in English | MEDLINE | ID: mdl-37839333

ABSTRACT

BACKGROUND: WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS: An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS: We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS: WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.


Subject(s)
Endometriosis , Macrophage Colony-Stimulating Factor , Humans , Female , Mice , Animals , Macrophage Colony-Stimulating Factor/metabolism , Endometriosis/metabolism , Receptors, Estrogen/metabolism , Macrophages/metabolism , Granulosa Cells/metabolism , Granulosa Cells/pathology , Apoptosis , Estrogens/metabolism , Wnt4 Protein/genetics , Wnt4 Protein/metabolism
15.
Comput Struct Biotechnol J ; 21: 4974-4987, 2023.
Article in English | MEDLINE | ID: mdl-37867975

ABSTRACT

The Snf2 protein family is a group of ATP-dependent chromatin remodeling factors (CHRs) that play an essential role in gene expression regulation. In plants, Snf2 is involved in growth, development, as well as stress resistance. However, only a very limited number of experimentally validated Snf2 have been identified and reported, while the majority remaining undiscovered in most species . In this study, we predicted 3135 Snf2 proteins and 8398 chromatin remodeling complex (CRC) subunits in diverse plant species, and constructed the Plant Chromatin Remodeling Factors Database (PlantCHRs, http://www.functionalgenomics.cn/PlantCHRs/), which provide a comprehensive resource for researchers to access information about plant CHRs. We also developed an online tool capable of predicting CHRs and CRC subunits. Moreover, we investigated the distribution of Snf2 proteins in different species and observed a significant increase in the number of Snf2 proteins and the diversity of the Snf2 subfamily during the evolution, highlighting their evolutionary importance. By analyzing the expression patterns of the Snf2 genes in different tissues of maize and Arabidopsis, we found that the Snf2 proteins may show some conservation across different species in regulating plant growth and development. Over the all, we established a comprehensive database for plant CHRs, which will facilitate the researches on plant chromatin remodeling.

16.
Behav Brain Funct ; 19(1): 16, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749598

ABSTRACT

BACKGROUND: Living a happy and meaningful life is an eternal topic in positive psychology, which is crucial for individuals' physical and mental health as well as social functioning. Well-being can be subdivided into pleasure attainment related hedonic well-being or emotional well-being, and self-actualization related eudaimonic well-being or psychological well-being plus social well-being. Previous studies have mostly focused on human brain morphological and functional mechanisms underlying different dimensions of well-being, but no study explored brain network mechanisms of well-being, especially in terms of topological properties of human brain morphological similarity network. METHODS: Therefore, in the study, we collected 65 datasets including magnetic resonance imaging (MRI) and well-being data, and constructed human brain morphological network based on morphological distribution similarity of cortical thickness to explore the correlations between topological properties including network efficiency and centrality and different dimensions of well-being. RESULTS: We found emotional well-being was negatively correlated with betweenness centrality in the visual network but positively correlated with eigenvector centrality in the precentral sulcus, while the total score of well-being was positively correlated with local efficiency in the posterior cingulate cortex of cortical thickness network. CONCLUSIONS: Our findings demonstrated that different dimensions of well-being corresponded to different cortical hierarchies: hedonic well-being was involved in more preliminary cognitive processing stages including perceptual and attentional information processing, while hedonic and eudaimonic well-being might share common morphological similarity network mechanisms in the subsequent advanced cognitive processing stages.


Subject(s)
Brain , Emotions , Humans , Brain/diagnostic imaging , Happiness , Cognition , Motivation
17.
Thorac Cancer ; 14(31): 3133-3139, 2023 11.
Article in English | MEDLINE | ID: mdl-37718465

ABSTRACT

BACKGROUND: The aim of this study was to investigate the efficacy of bevacizumab (Bev) in reducing peritumoral brain edema (PTBE) after stereotactic radiotherapy (SRT) for lung cancer brain metastases. METHODS: A retrospective analysis was conducted on 44 patients with lung cancer brain metastases (70 lesions) who were admitted to our oncology and Gamma Knife center from January 2020 to May 2022. All patients received intracranial SRT and had PTBE. Based on treatment with Bev, patients were categorized as SRT + Bev and SRT groups. Follow-up head magnetic resonance imaging was performed to calculate PTBE and tumor volume changes. The edema index (EI) was used to assess the severity of PTBE. Additionally, the extent of tumor reduction and intracranial progression-free survival (PFS) were compared between the two groups. RESULTS: The SRT + Bev group showed a statistically significant difference in EI values before and after radiotherapy (p = 0.0115), with lower values observed after treatment, but there was no difference in the SRT group (p = 0.4008). There was a difference in the distribution of EI grades in the SRT + Bev group (p = 0.0186), with an increased proportion of patients at grades 1-2 after radiotherapy, while there was no difference in the SRT group (p > 0.9999). Both groups demonstrated a significant reduction in tumor volume after radiotherapy (p < 0.05), but there was no difference in tumor volume changes between the two groups (p = 0.4089). There was no difference in intracranial PFS between the two groups (p = 0.1541). CONCLUSION: Bevacizumab significantly reduces the severity of PTBE after radiotherapy for lung cancer. However, its impact on tumor volume reduction and intracranial PFS does not reach statistical significance.


Subject(s)
Brain Edema , Brain Neoplasms , Lung Neoplasms , Radiosurgery , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/etiology , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/pathology , Retrospective Studies , Radiosurgery/methods , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary
18.
Mol Immunol ; 162: 84-94, 2023 10.
Article in English | MEDLINE | ID: mdl-37660434

ABSTRACT

Vacuolar-type H+-ATPase (V-ATPase) critically controls phagosome acidification to promote pathogen digestion and clearance in macrophage. However, the specific subunits of V-ATPase have been evidenced to play contradictory functions in inflammatory cytokines generation and secretion exposure to external bacterial or LPS stimulation. Therefore, identifying the unique function of the separate subunit of V-ATPase is extremely important to regulate macrophage function. Here, we found that D-mannose, a C-2 epimer of glucose, suppressed ATP6V1B2 lysosomal translocation to inhibit V-ATPase activity in macrophages, thereby causing the scaffold protein axis inhibitor protein (AXIN) recruitment to lysosomal membrane and AMPK activation. Correspondingly, LPS-stimulated macrophage M1 polarization was significantly suppressed by D-mannose via down-regulating NF-κB signaling pathway in response to AMPK activation, while IL-4 induced macrophage M2 polarization were not affected. Furthermore, the failure of lysosomal localization of ATP6V1B2 caused by D-mannose also led to the acidification defects of lysosome. Therefore, D-mannose displayed a remarkable function in inhibiting macrophage phagocytosis and bacterial killing. Taken together, D-mannose acts a novel V-ATPase suppressor to attenuate macrophage inflammatory production but simultaneously prevent macrophage phagocytosis and bacterial killing.


Subject(s)
Adenosine Triphosphatases , Cytokines , Mannose/pharmacology , AMP-Activated Protein Kinases , Lipopolysaccharides/pharmacology , Macrophages
19.
Int J Biol Macromol ; 242(Pt 4): 125170, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37276900

ABSTRACT

Previous studies have implicated the attractive role of long noncoding RNAs (lncRNAs) in the remodeling of mammalian tissues. The migration of granulosa cells (GCs), which are the main supporting cells in ovarian follicles, stimulates the follicular remodeling. Here, with the cultured GCs as the follicular model, the actin gamma 1 (ACTG1) was observed to significantly promote the migration and proliferation while inhibit the apoptosis of GCs, suggesting that ACTG1 was required for ovarian remodeling. Moreover, we identified the trans-regulatory lncRNA of ACTG1 (TRLA), which was epigenetically targeted by histone H3 lysine 4 acetylation (H3K4ac). Mechanistically, the 2-375 nt of TRLA bound to ACTG1's mRNA to increase the expression of ACTG1. Furthermore, TRLA facilitated the migration and proliferation while inhibited the apoptosis of GCs, thereby accelerating follicular remodeling. Besides, TRLA acted as a ceRNA for miR-26a to increase the expression of high-mobility group AT-hook 1 (HMGA1). Collectively, TRLA induces the remodeling of ovarian follicles via complementary to ACTG1's mRNA and regulating miR-26a/HMGA1 axis in GCs. These observations revealed a novel and promising trans-acting lncRNA mechanism mediated by H3K4ac, and TRLA might be a new target to restore follicular remodeling and development.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Female , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , HMGA1a Protein/metabolism , Ovarian Follicle , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Mammals/genetics
20.
Reprod Biol Endocrinol ; 21(1): 51, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268975

ABSTRACT

BACKGROUND: Monozygotic twins (MZTs) are associated with high risks of maternal and fetal complications. Even with the widely used elective single embryo transfer (SET), the risk of MZTs following assisted reproductive technology (ART) treatments remains. However, most studies of MZTs focused on the relevant etiology, with few studies describing pregnancy and neonatal outcomes. METHODS: This retrospective cohort study included 19,081 SET cycles resulting from in-vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT) and testicular sperm aspiration (TESA) performed between January 2010 and July 2020 in a single university-based center. A total of 187 MZTs were included in this investigation. The main outcome measures were the incidence, pregnancy and neonatal outcomes of MZTs. Multivariate logistic regression analysis was performed to figure out the risk factors for pregnancy loss. RESULTS: The overall rate of MZTs from ART treatment in SET cycles was 0.98%. No significant difference was found in the incidence of MZTs among the four groups (p = 0.259). The live birth rate of MZTs in the ICSI group (88.5%) was significantly more favorable than in the IVF, PGT and TESA groups (60.5%, 77.2% and 80%, respectively). IVF resulted in a significantly increased risk of pregnancy loss (39.4%) and early miscarriage (29.5%) in MZT pregnancies compared to ICSI (11.4%, 8.5%), PGT (22.7%, 16.6%) and TESA (20%, 13.3%). The total rate of twin-to-twin transfusion syndrome (TTTS) in MZTs was 2.7% (5/187); however, the TESA group had the highest rate at 20% and was significantly higher than the PGT group (p = 0.005). The four ART groups had no significant effect on the occurrence of congenital abnormalities or other neonatal outcomes in newborns from MZT pregnancies. Multivariate logistic regression analysis revealed that infertility duration, cause of infertility, the total dose of Gn used, history of miscarriages, and the number of miscarriages were not related to the risk of pregnancy loss (p > 0.05). CONCLUSIONS: The rate of MZTs was similar among the four ART groups. The pregnancy loss and the early miscarriage rate of MZTs was increased in IVF patients. Neither the cause of infertility nor the history of miscarriage was correlated with the risk of pregnancy loss. MZTs in the TESA group had a higher risk of TTTS, placental effects influenced by sperm and paternally expressed genes may play a role. However, due to the small total number, studies with larger sample sizes are still needed to validate these result. Pregnancy and neonatal outcomes of MZTs after PGT treatment seem to be reassuring but the duration of the study was short, and long-term follow-up of the children is needed.


Subject(s)
Abortion, Spontaneous , Infertility , Female , Humans , Infant, Newborn , Male , Pregnancy , Abortion, Spontaneous/etiology , Embryo Transfer/adverse effects , Fertilization in Vitro/adverse effects , Placenta , Pregnancy Rate , Retrospective Studies , Semen , Twins, Monozygotic
SELECTION OF CITATIONS
SEARCH DETAIL
...