Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 398
Filter
1.
Nanoscale ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953142

ABSTRACT

Conductive bridge random access memory (CBRAM) devices exhibit great potential as the next-generation nonvolatile memory devices. However, they suffer from two major disadvantages, namely relatively high power consumption and large cycle-to-cycle and device-to-device variations, which hinder their more extensive commercialization. To learn how to enhance their device performance, kinetic Monte Carlo (KMC) simulations were employed to illustrate the variation of electroforming processes in nanomanipulated CBRAM devices by introducing an ion-blocking layer with scalable nanopores and tuning the microstructures of dielectric layers. Both the size of nanopores and the inhomogeneity of dielectric layers have significant impacts on the forming processes of conductive filaments. The dielectric layer with a high-content loose texture plus the scalable nanopore-containing ion-blocking layer leads to the formation of size-controlled and uniform filaments, which remarkably contributes to miniaturizable and stable CBRAM devices. Our study provides insights into nanomanipulation strategies to realize high-performance CBRAM devices, still awaiting future experimental confirmation.

2.
Materials (Basel) ; 17(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893759

ABSTRACT

Slag and fly ash (FA) are mostly used as precursors for the production of alkali-activated materials (AAMs). FA is the waste discharged by power plants, while slag and steel slag (SS) both belong to the iron and steel industry. The effects of SS and FA on the strength, microstructure, and volume stability of alkali-activated slag (AAS) materials with different water glass modulus (Ms) values were comparatively investigated. The results show that adding SS or FA decreases the compressive strength of AAS mortar, and the reduction effect of SS is more obvious at high Ms. SS or FA reduce the non-evaporable water content (Wn) of AAS paste. However, SS increases the long-term Wn of AAS paste at low Ms. The cumulative pore volume and porosity increase after adding SS or FA, especially after adding FA. The hydration products are mainly reticular C-(A)-S-H gels. Adding SS increases the Ca/Si ratio of C-(A)-S-H gel but decreases the Al/Si ratio. However, by mixing FA, the Ca/Si ratio is reduced and the Al/Si ratio is almost unchanged. The incorporation of SS or FA reduces the drying shrinkage of AAS mortar, especially when SS is added. Increasing Ms increases the compressive strength and improves the pore structure, and it significantly increases the drying shrinkage of all samples. This study provides theoretical guidance for the application of steel slag in the alkali-activated slag material.

3.
Vet Microbiol ; 295: 110152, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38896938

ABSTRACT

The intestinal barrier of newborn piglets is vulnerable and underdeveloped, making them susceptible to enteric virus infections. Benzoic acid (BA), employed as a growth promoter, exhibits the potential to enhance the gut health of piglets by modulating intestinal morphometry and tight junction dynamics. However, the extent to which BA regulates the intestinal mucus barrier through its impact on stem cells remains inadequately elucidated. Therefore, this study was conducted to investigate the effects of BA on the intestinal barrier and the differentiation of intestinal stem cells, employing in vivo piglet and in vitro intestinal organoid models. Our investigation revealed a significant increase in the number of goblet cells within the small intestine, as well as the strengthening of the mucus barrier in vivo following oral treatment with BA, providing partial protection against PEDV infection in piglets. Additionally, in vitro cultivation of enteroids with BA led to a notable increase in the number of MUC2+ GCs, indicating the promotion of GC differentiation by BA. Furthermore, transcriptome analysis revealed an upregulation of the number of GCs and the expression of cell vesicle transport-related genes during BA stimulation, accompanied by the downregulation of the Wnt and Notch signaling pathways. Mechanistically, MCT1 facilitated the transport of BA, subsequently activating the MAPK pathway to mediate GC differentiation. Overall, this study highlights a novel function for BA as a feed additive in enhancing the intestinal mucus barrier by promoting intestinal GC differentiation, and further prevents viral infection in piglets.

4.
Methods Mol Biol ; 2813: 245-280, 2024.
Article in English | MEDLINE | ID: mdl-38888783

ABSTRACT

Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.


Subject(s)
Computational Biology , Computer Simulation , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Epitopes, T-Lymphocyte/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes/immunology , Software , Animals , Epitope Mapping/methods , Antigen Presentation/immunology
5.
Placenta ; 154: 9-17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38830294

ABSTRACT

The maternal-fetal interface is composed of the placenta, which is affiliated with the fetus, and the maternal decidua. During pregnancy, the placenta is mainly responsible for nutrient transport and immune tolerance maintenance, which plays a key role in fetal growth and development and pregnancy maintenance. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exists in various cell types at the maternal-fetal interface and is involved in multiple cellular processes. Recent studies have highlighted the role of AhR in regulating various physiological processes, including glucose and lipid metabolism, as well as tryptophan metabolism and immune responses, within non-pregnant tissues. This review shifts focus towards understanding how AhR modulation impacts metabolism and immune regulation at the maternal-fetal interface. This may implicate the development of pregnancy-related complications and the potential target of the AhR pathway for therapeutic strategies against poor pregnancy outcomes.

6.
Nat Chem Biol ; 20(7): 924-933, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942968

ABSTRACT

Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Microbial Sensitivity Tests , Clostridioides difficile/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Vancomycin/pharmacology , Vancomycin/chemistry , Cell Wall/drug effects , Cell Wall/metabolism , Teichoic Acids/metabolism , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Drug Therapy, Combination , Peptides, Cyclic , Lipopeptides
7.
Polymers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932045

ABSTRACT

Ceramizable silicone rubber (CSR) composed of silicone rubber matrix and inorganic fillers can be transformed into a dense flame-retardant ceramic upon encountering high temperatures or flames. Conventionally, CSR can be sintered into a dense ceramic at temperatures above 1000 °C, which is higher than the melting point of a copper conductor used in a power cable. In this study, the vulcanization process and mass ratio of inorganic fillers of CSR were studied to lower its ceramization temperature to 950 °C. The electrical and mechanical properties of CSRs and their ceramic bulks were studied with various ratios of wollastonite and muscovite. It was found that the CSR samples could be successfully fabricated using a two-step vulcanization technique (at 120 °C and 150 °C, respectively). As a high ratio of muscovite filler was introduced into the CSR, the sample presented a high dc electrical resistivity of 6.713 × 1014 Ω·cm, and a low dielectric constant of 4.3 and dielectric loss of 0.025 at 50 Hz. After the thermal sintering (at 950 °C for 1 h) of the CSR sample with a high ratio of muscovite, the ceramic sample exhibits a dense microstructure without any pores. The ceramic also demonstrates excellent insulating properties, with a volume resistivity of 8.69 × 1011 Ω·cm, and a low dielectric loss of 0.01 at 50 Hz. Meanwhile, the three-point bending strength of the ceramic sample reaches a value of 110.03 MPa. This study provides a potential route to fabricate CSR used for fire-resistant cables.

8.
Lancet Reg Health West Pac ; 47: 101100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881803

ABSTRACT

Background: Long-term exposure to PM2.5 is known to increase the risks for diabetes and obesity, but its effects on their coexistence, termed diabesity, remain uncertain. This study aimed to investigate the associations of long-term exposure to PM2.5 and its chemical constituents with the risks for diabesity, diabetes, and obesity. Methods: This cross-sectional study used the baseline data of a multi-center cohort, consisting of three provincially representative cohorts comprising a total of 134,403 participants from the eastern (Fujian Province), central (Hubei Province), and western (Yunnan Province) regions of China. Obesity and diabetes, and diabesity were identified by a body mass index (BMI) ≥28 kg/m2 and fasting plasma glucose (FPG) ≥126 mg/dL. The average concentrations of PM2.5 and five chemical constituents (NO3 -, SO4 2-, NH4 +, organic matter, and black carbon) over participants' residence during the past three years were estimated using machine learning models. Logistic regression models with double robust estimators, Bayesian kernel machine regression, and weighted quantile sum regression were employed to estimate independent and joint effects of PM2.5 chemical constituents on the risks for diabesity, diabetes, and obesity, as well as the differences from the effects on obesity. Stratified analyses were performed to examine effect modification of sociodemographic and lifestyle factors. Findings: There were 129,244 participants with a mean age of 54.1 ± 13.8 years included in the study. Each interquartile range increase in PM2.5 concentration (8.53 µg/m3) was associated with an increased risk for diabesity (OR = 1.23 [1.17, 1.30]), diabetes only (OR = 1.16 [1.13, 1.19]), and obesity only (OR = 1.03 [1.00, 1.05]). Long-term exposure to each PM2.5 chemical constituent was associated with an increased risk for diabesity, where organic matter exposure, with maximum weight (48%), was associated with a higher risk for diabesity (OR = 1.21 [1.16, 1.27]). Among those with obesity, black carbon contributed most (68%) to the joint effect of PM2.5 chemical constituents on diabesity (OR = 1.16 [1.11, 1.22]). Physical activity reduced adverse effects of PM2.5 on diabesity. Also, additive rather than multiplicative effects of obesity on the PM2.5-diabetes association were observed. Interpretation: Long-term exposure to PM2.5 and its chemical constituents was associated with an increased risk for diabesity, stronger than associations for diabetes and obesity alone. The main constituents associated with diabesity and obesity were black carbon and organic matter. Funding: National Natural Science Foundation of China (42271433, 723B2017), National Key R&D Program of China (2023YFC3604702), Fundamental Research Funds for the Central Universities (2042023kfyq04, 2042024kf1024), the Science and Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0001G), Science and technology project of Tibet Autonomous Region(XZ202303ZY0007G), Key R&D Project of Sichuan Province (2023YFS0251), Renmin Hospital of Wuhan University (JCRCYG-2022-003), Jiangxi Provincial 03 Special Foundation and 5G Program (20224ABC03A05), Wuhan University Specific Fund for Major School-level Internationalization Initiatives (WHU-GJZDZX-PT07).

9.
Sci Rep ; 14(1): 14346, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906947

ABSTRACT

This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as ß-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular ß-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting ß-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive ß-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.


Subject(s)
Microalgae , Whey , beta-Galactosidase , beta-Galactosidase/metabolism , Microalgae/metabolism , Microalgae/enzymology , Whey/metabolism , Lactose/metabolism , Stramenopiles/enzymology , Stramenopiles/metabolism , Fresh Water/microbiology , Biodegradation, Environmental , Biomass , Nitrogen/metabolism
10.
BMC Med ; 22(1): 253, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902735

ABSTRACT

BACKGROUND: Cognitive dysfunction is one of the common symptoms in patients with major depressive disorder (MDD). Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been studied separately in the treatment of cognitive dysfunction in MDD patients. We aimed to investigate the effectiveness and safety of rTMS combined with tDCS as a new therapy to improve neurocognitive impairment in MDD patients. METHODS: In this brief 2-week, double-blind, randomized, and sham-controlled trial, a total of 550 patients were screened, and 240 MDD inpatients were randomized into four groups (active rTMS + active tDCS, active rTMS + sham tDCS, sham rTMS + active tDCS, sham rTMS + sham tDCS). Finally, 203 patients completed the study and received 10 treatment sessions over a 2-week period. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess patients' cognitive function at baseline and week 2. Also, we applied the 24-item Hamilton Depression Rating Scale (HDRS-24) to assess patients' depressive symptoms at baseline and week 2. RESULTS: After 10 sessions of treatment, the rTMS combined with the tDCS group showed more significant improvements in the RBANS total score, immediate memory, and visuospatial/constructional index score (all p < 0.05). Moreover, post hoc tests revealed a significant increase in the RBANS total score and Visuospatial/Constructional in the combined treatment group compared to the other three groups but in the immediate memory, the combined treatment group only showed a better improvement than the sham group. The results also showed the RBANS total score increased significantly higher in the active rTMS group compared with the sham group. However, rTMS or tDCS alone was not superior to the sham group in terms of other cognitive performance. In addition, the rTMS combined with the tDCS group showed a greater reduction in HDRS-24 total score and a better depression response rate than the other three groups. CONCLUSIONS: rTMS combined with tDCS treatment is more effective than any single intervention in treating cognitive dysfunction and depressive symptoms in MDD patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100052122).


Subject(s)
Cognition , Depressive Disorder, Major , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Male , Female , Transcranial Direct Current Stimulation/methods , Double-Blind Method , Adult , Transcranial Magnetic Stimulation/methods , Middle Aged , Cognition/physiology , Treatment Outcome , Combined Modality Therapy , Young Adult
11.
Microbiol Spectr ; : e0377423, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916358

ABSTRACT

Stripe rust of wheat is caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Breeding durably resistant wheat varieties by disrupting the susceptibility (S) gene has an important impact on the control of wheat stripe rust. Mingxian169 (MX169) showed strong stripe rust susceptibility to all the races of Pst. However, molecular mechanisms and responsive genes underlying susceptibility of the wheat variety MX169 to Pst have not been elucidated. Here, we utilized next-generation sequencing technology to analyze transcriptomics data of "MX169" and high-resistance wheat "Zhong4" at 24, 48, and 120 h post-inoculation (hpi) with Pst. Comparative transcriptome analysis revealed 3,494, 2,831, and 2,700 differentially expressed genes (DEGs) at different time points. We observed an upregulation of DEGs involved in photosynthesis, flavonoid biosynthesis, pyruvate metabolism, thiamine metabolism, and other biological processes, suggesting their involvement in MX169's response to Pst. DEGs encoding transcription factors were also identified. Our study suggested the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst. IMPORTANCE: Our study suggests the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst.

12.
Cell Commun Signal ; 22(1): 315, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849890

ABSTRACT

BACKGROUND: Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS: Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS: Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION: Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.


Subject(s)
Chalcones , Inflammasomes , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Chalcones/pharmacology , Chalcones/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Macrophages/drug effects , Lipopolysaccharides/pharmacology , Male , Disease Models, Animal , Colitis/chemically induced , Colitis/pathology , Colitis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology
14.
Eur J Nutr ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869657

ABSTRACT

PURPOSE: Our study aimed to explore the efficacy of Bifidobacterium breve 207-1 on specific neurotransmitters and hormones and the ability to regulate lifestyle behaviors in healthy adults. METHODS: In total, 120 healthy adults with high mental stress, overweight, insomnia, and constipation were randomly assigned to receive low-dose B. breve 207-1 (LD, n = 40), high-dose B. breve 207-1 (HD, n = 40), or placebo (n = 40) for 28 days. Fecal and blood samples were collected and questionnaires were answered before and after the trial. Neurotransmitters and serum hormones were detected using enzyme-linked immunosorbent assay. The gut microbiota composition was assessed using 16 S rRNA sequencing. Short-chain fatty acids (SCFAs) concentrations were determined via gas chromatography-mass spectrometry (GC-MS). RESULTS: The primary outcome of our study was changes in mental wellness, including neurotransmitters, the hypothalamic-pituitary-adrena (HPA) axis hormones, and the psychological scales. The results showed that γ-aminobutyric acid (GABA) increased significantly and the HPA axis hormones were suppressed overall in the probiotic groups while 5-hydroxytryptamine (5-HT) did not change significantly. However, there was no significant change in mood scale scores. The secondary outcome focused on the ability of 207-1 to regulate the body and lifestyle of healthy adults (e.g., sleep, diet, exercise, etc.). The PSQI scores in the probiotics groups significantly decreased, indicating improved sleep quality. Meanwhile, the probiotic groups had a slight increase in exercise consumption while dietary intake stabilized. By physical examination, the participants showed weight loss although no statistically significant difference was observed between the groups. Then, validated by gut microbiota, changes in the gut microbiota were observed under the effective intervention of 207-1 while short-chain fatty acids (SCFAs) increased in the LD group, particularly acetic and propionic acids. There was a slight decrease in alpha-diversity in the HD group. CONCLUSION: Bifidobacterium breve 207-1 entered the organism and affected neurotransmitter and the HPA axis hormone levels via the microbiome-gut-brain axis. Meanwhile, 207-1 supplementation improved daily lifestyle behaviors in healthy adults, which may in turn lead to changes in their bodies (e.g. weight and lipid metabolism). However, this study did not find significant mood-modulating efficacy. The mechanism of the overall study is unclear, but we hypothesize that SCFAs may be the key pathway, and more experiments are needed for validation in the future. TRIAL REGISTRATION: This trial was retrospectively registered in the Chinese Clinical Trial Registry under the accession number ChiCTR2300069453 on March 16, 2023.

15.
Phys Rev Lett ; 132(20): 200802, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829065

ABSTRACT

Correlations of fluctuations are essential to understanding many-body systems and key information for advancing quantum technologies. To fully describe the dynamics of a physical system, all time-ordered correlations (TOCs), i.e., the dynamics-complete set of correlations are needed. The current measurement techniques can only access a limited set of TOCs, and there has been no systematic and feasible solution for extracting the dynamic-complete set of correlations hitherto. Here we propose a platform-universal protocol to selectively detect arbitrary types of TOCs via quantum channels. In our method, the quantum channels are synthesized with various controls, and engineer the evolution of a sensor-target system along a specific path that corresponds to a desired correlation. Using nuclear magnetic resonance, we experimentally demonstrate this protocol by detecting a specific type of fourth-order TOC that has never been accessed previously. We also show that the knowledge of the TOCs can be used to significantly improve the precision of quantum optimal control. Our method provides a new toolbox for characterizing the quantum many-body states and quantum noise, and hence for advancing the fields of quantum sensing and quantum computing.

16.
Synth Syst Biotechnol ; 9(3): 594-599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38711551

ABSTRACT

Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence (AI) systems, due to its advantages of adaptive learning and parallel computing. Meanwhile, biocomputing has seen ongoing development with the rise of synthetic biology, becoming the driving force for new generation semiconductor synthetic biology (SemiSynBio) technologies. DNA-based biomolecules could potentially perform the functions of Boolean operators as logic gates and be used to construct artificial neural networks (ANNs), providing the possibility of executing neuromorphic computing at the molecular level. Herein, we briefly outline the principles of neuromorphic computing, describe the advances in DNA computing with a focus on synthetic neuromorphic computing, and summarize the major challenges and prospects for synthetic neuromorphic computing. We believe that constructing such synthetic neuromorphic circuits will be an important step toward realizing neuromorphic computing, which would be of widespread use in biocomputing, DNA storage, information security, and national defense.

17.
Front Pharmacol ; 15: 1296075, 2024.
Article in English | MEDLINE | ID: mdl-38708084

ABSTRACT

The metabolic disease hyperuricemia (HUA) is caused by presence of excessive serum uric acid (UA), which leads to an increased risk of chronic kidney disease and gout. As a widely used traditional Chinese medicine, Euodiae fructus (ER) has strong anti-inflammatory and analgesic effects, however, its therapeutic effects on HUA and gout have not been investigated. To investigate the potential effects and underlying mechanisms, the effect of ER on proinflammatory cytokines and NLRP3 inflammasome activation was studied in mouse bone marrow macrophages. Moreover, a mouse model of HUA and gouty arthritis was established by coadministration of potassium oxonate (PO) and monosodium urate crystals to mice fed a high-fat diet (HFD) for 37 consecutive days. Oral administration of ER aqueous extract was given 1 hour later after the injection of PO for 10 days. Our study showed that ER is a powerful NLRP3 inhibitor in mouse macrophages. Most importantly, ER (0.75 g/kg) treatment substantially decreased the ankle joint thickness ratio, serum UA, creatinine and blood urea nitrogen levels (p < 0.05). Additionally, ER (0.75 g/kg) dramatically reversed the increases in renal urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) as well as the decreases in organic anion transporter 1 (OAT1) and ATP binding cassette subfamily G member 2 (ABCG2) levels (p < 0.05). Moreover, ER (0.75 g/kg) markedly ameliorated the production of the serum inflammatory cytokines IL-1ß and TNF-α (p < 0.01), and improved the activation of NLRP3 inflammasome signaling in the kidneys. Taken together, these data indicate that ER, a powerful and specific NLRP3 inhibitor, has multiple anti-HUA, anti-gout and anti-inflammatory effects. Our investigation is designed to experimentally support the conventional use of ER-containing classical herbal formulas in the treatment of HUA-related disorders and may add a new dimension to the clinical application of ER.

18.
Front Cell Infect Microbiol ; 14: 1341545, 2024.
Article in English | MEDLINE | ID: mdl-38779561

ABSTRACT

Background: Engaging in anal sexual intercourse markedly increases the risk of developing HIV among men who have sex with men (MSM); oral sexual activities tend to uniquely introduce gut-derived microbes to salivary microbiota, which, combined with an individual's positive HIV status, may greatly perturb oral microecology. However, till date, only a few published studies have addressed this aspect. Methods: Based on 16S rRNA sequencing data of bacterial taxa, MicroPITA picks representative samples for metagenomic analysis, effectively revealing how the development and progression of the HIV disease influences oral microbiota in MSM. Therefore, we collected samples from 11 HIV-negative and 44 HIV-positive MSM subjects (stage 0 was defined by HIV RNA positivity, but negative or indeterminate antibody status; stages 1, 2, and 3 were defined by CD4+ T lymphocyte counts ≥ 500, 200-499, and ≤ 200 or opportunistic infection) and selected 25 representative saliva samples (5 cases/stage) using MicroPITA. Metagenomic sequencing analysis were performed to explore whether positive HIV status changes salivary bacterial KEGG function and metabolic pathway in MSM. Results: The core functions of oral microbiota were maintained across each of the five groups, including metabolism, genetic and environmental information processing. All HIV-positive groups displayed KEGG functions of abnormal proliferation, most prominently at stage 0, and others related to metabolism. Clustering relationship analysis tentatively identified functional relationships between groups, with bacterial function being more similar between stage 0-control groups and stage 1-2 groups, whereas the stage 3 group exhibited large functional changes. Although we identified most metabolic pathways as being common to all five groups, several unique pathways formed clusters for certain groups; the stage 0 group had several, while the stage 2 and 3 groups had few, such clusters. The abundance of K03046 was positively correlated with CD4 counts. Conclusion: As HIV progresses, salivary bacterial function and metabolic pathways in MSM progressively changes, which may be related to HIV promoting abnormal energy metabolism and exacerbate pathogen virulence. Further, infection and drug resistance of acute stage and immune cell destruction of AIDS stage were abnormally increased, predicting an increased risk for MSM individuals to develop systemic and oral diseases.


Subject(s)
HIV Infections , Homosexuality, Male , RNA, Ribosomal, 16S , Saliva , Humans , Male , Saliva/microbiology , Saliva/virology , HIV Infections/microbiology , RNA, Ribosomal, 16S/genetics , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbiota , Metagenomics , CD4 Lymphocyte Count , Middle Aged , Young Adult , Sexual and Gender Minorities
19.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793325

ABSTRACT

The effects of steel slag (SS) and fly ash (FA) on hydration heat, fluidity, setting time and rheological properties of alkali-activated slag (AAS) pastes with different silicate modulus (Ms) values were comparatively investigated. The results show that the incorporation of SS shortens the induction period, increases the cumulative hydration heat, improves the initial fluidity and decreases the setting time at low Ms, but the opposite trend is found at high Ms. FA significantly retards the reaction, reduces the hydration heat, increases the fluidity and prolongs the setting time. The addition of SS or FA reduces the yield stress and plastic viscosity of AAS paste. SS improves the rheological properties of AAS paste more significantly than that of FA at high Ms. The yield stress and plastic viscosity of AAS paste with SS or FA rise with the increasing Ms and decline with the increasing water/binder (w/b) ratio.

20.
Acta Crystallogr C Struct Chem ; 80(Pt 6): 179-189, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38712546

ABSTRACT

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.


Subject(s)
Cryoelectron Microscopy , Software , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...