Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Theranostics ; 14(13): 5303-5315, 2024.
Article in English | MEDLINE | ID: mdl-39267792

ABSTRACT

Rationale: Parkin (an E3 ubiquitin protein ligase) is an important regulator of mitophagy. However, the role of Parkin in viral myocarditis (VMC) remains unclear. Methods: Coxsackievirus B3 (CVB3) infection was induced in mice to create VMC. Cardiac function and inflammatory response were evaluated by echocardiography, histological assessment, and molecular analyses. AAV9 (adeno-associated virus 9), transmission electron microscopy (TEM) and western blotting were used to investigate the mechanisms by which Parkin regulates mitophagy and cardiac inflammation. Results: Our data indicated that Parkin- and BNIP3 (BCL2 interacting protein 3 like)-mediated mitophagy was activated in VMC mice and neonatal rat cardiac myocytes (NRCMs) infected with CVB3, which blocked autophagic flux by inhibiting autophagosome-lysosome fusion. Parkin silencing aggravated mortality and accelerated the development of cardiac dysfunction in CVB3-treated mice. While silencing of Parkin did not significantly increase inflammatory response through activating NF-κB pathway and production of inflammatory cytokines post-VMC, the mitophagy activity were reduced, which stimulated the accumulation of damaged mitochondria. Moreover, Parkin silencing exacerbated VMC-induced apoptosis. We consistently found that Parkin knockdown disrupted mitophagy activity and inflammatory response in NRCMs. Conclusion: This study elucidated the important role of Parkin in maintaining cardiac function and inflammatory response by regulating mitophagy activity and the NF-κB pathway during acute VMC. Although the functional impact of mitophagy remains unclear, our findings suggest that Parkin silencing may accelerate VMC development.


Subject(s)
Coxsackievirus Infections , Mitophagy , Myocarditis , Myocytes, Cardiac , Ubiquitin-Protein Ligases , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Myocarditis/virology , Myocarditis/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Male , Rats , Enterovirus B, Human/physiology , Apoptosis , Disease Models, Animal , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NF-kappa B/metabolism , Mice, Inbred BALB C
2.
Article in English | MEDLINE | ID: mdl-39269400

ABSTRACT

BACKGROUND: The relationship between long-term outcomes and operator experience for left atrial appendage occlusion (LAAO) is still unknown. OBJECTIVES: This study sought to explore the association between operator LAAO experience and one-year clinical outcomes. METHODS: The RECORD study (Registry to Evaluate Chinese Real-World Clinical Outcomes in Patients With AF Using the WATCHMAN Left Atrial Appendage Closure Technology; NCT03917563) was a multicenter, prospective registry that included patients with the WATCHMAN LAAO device (Boston Scientific) in China from April 1, 2019, to October 31, 2020. The current analyses included patients with solely LAAO from the registry; those who had concomitant LAAO and ablation/other procedures were excluded. The primary outcome was a composite endpoint of death, stroke, systemic embolism, and Bleeding Academic Research Consortium (BARC)-defined type 3 or 5 bleeding at 1 year. RESULTS: A total of 1,547 LAAO patients and 111 operators were included. The mean ± SD CHA2DS2-VASc and HAS-BLED scores of patients were 4.0 ± 1.8 and 2.5 ± 1.1, respectively. The mean ± SD age of operators was 47.0 ± 7.2 years, 15 (13.5%) were female, and 52 (46.8%) were electrophysiologists. Utilizing maximally selected log-rank statistics, the thresholds to categorize an experienced operator were performing ≥32 LAAOs annually or ≥134 LAAOs in total. Performing ≥32 LAAOs annually is the better criterion than ≥134 LAAOs in total (absolute net reclassification index: 25.79%; P < 0.001). Compared with the ≥32 LAAO annually group, the <32 group was associated with a 1.8-fold (HRadjusted: 1.79; 95% CI: 1.16-2.78; P = 0.009) increase in the risk of the primary endpoint, and such risk in the <32 group can be reduced by ∼12% after performing each additional 5 cases (HRadjusted per 5 cases: 0.88; 95% CI: 0.78-0.99; P = 0.033). CONCLUSIONS: Performing ≥32 LAAOs annually could be a threshold to categorize an experienced operator. Before reaching this threshold, the risk of death, stroke, systemic embolism, and BARC-defined type 3 or 5 bleeding decreased by 12% after every 5 cases performed.

3.
Int J Biol Macromol ; 279(Pt 4): 135577, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270907

ABSTRACT

Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.

4.
Anal Chem ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252431

ABSTRACT

Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered "plasmonic storms" are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed "plasmonic storms" are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect Salmonella typhimurium with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL-1, highlighting the potential of nanoconfinement in biosensing.

5.
Adv Sci (Weinh) ; : e2406149, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120124

ABSTRACT

Engineering multimetallic nanocatalysts with the entropy-mediated strategy to reduce reaction activation energy is regarded as an innovative and effective approach to facilitate efficient heterogeneous catalysis. Accordingly, conformational entropy-driven high-entropy alloys (HEAs) are emerging as a promising candidate to settle the catalytic efficiency limitations of nanozymes, attributed to their versatile active site compositions and synergistic effects. As proof of the high-entropy nanozymes (HEzymes) concept, elaborate PdMoPtCoNi HEA nanowires (NWs) with abundant active sites and tuned electronic structures, exhibiting peroxidase-mimicking activity comparable to that of natural horseradish peroxidase are reported. Density functional theory calculations demonstrate that the enhanced electron abundance of HEA NWs near the Fermi level (EF) is facilitated via the self-complementation effect among the diverse transition metal sites, thereby boosting the electron transfer efficiency at the catalytic interface through the cocktail effect. Subsequently, the HEzymes are integrated with a portable electronic device that utilizes Internet of Things-driven signal conversion and wireless transmission functions for point-of-care diagnosis to validate their applicability in digital biosensing of urinary biomarkers. The proposed HEzymes underscore significant potential in enhancing nanozymes catalysis through tunable electronic structures and synergistic effects, paving the way for reformative advancements in nano-bio analysis.

6.
Biosens Bioelectron ; 262: 116556, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38996596

ABSTRACT

The multiple-readout capability of multimodal detection enhances the flexibility, reliability, and accuracy of lateral flow immunoassay (LFIA). The conjugation of two different metal-organic frameworks (MOFs) as a new-generation composite material offers extraordinary opportunities for developing multimodal LFIA. It is anticipated to compensate limitations of traditional single colorimetric signal LFIA and improve the analysis performance. Herein, an ultra-bright fluorescent AIE-MOF was proposed and coupled with an in-situ growth of Prussian blue (PB) nanoparticles strategy to obtain a novel multimodal signal tracer (AIE-MOF@PB). Thereafter, it was successfully applied to develop the multimodal LFIA platform for the detection of nitrofurazone metabolites. The synergy of AIE-MOF and PB endows AIE-MOF@PB with superb water dispersibility, robust fluorescence emission, brilliant colorimetric signal, marvelous photothermal conversion, and enhanced antibody coupling efficiency, all of which facilitate a highly sensitive triple-readout LFIA platform. The detection sensitivity improved by at least 5-fold compared with the colloidal gold-based LFIA. This work not only inspires the rational design of aggregation-induced emission luminogens (AIEgen)-based complex materials but also highlights the promising potential in flexible point-of-care applications.


Subject(s)
Biosensing Techniques , Limit of Detection , Metal-Organic Frameworks , Nitrofurazone , Metal-Organic Frameworks/chemistry , Immunoassay/methods , Immunoassay/instrumentation , Biosensing Techniques/methods , Nitrofurazone/analysis , Nitrofurazone/chemistry , Humans , Ferrocyanides/chemistry , Colorimetry/methods , Fluorescent Dyes/chemistry
7.
Anal Chem ; 96(17): 6588-6598, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38619494

ABSTRACT

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Subject(s)
Food Microbiology , Listeria monocytogenes , Machine Learning , Listeria monocytogenes/isolation & purification , Cronobacter sakazakii/isolation & purification , Silicon Dioxide/chemistry , Point-of-Care Systems , Animals , Milk/microbiology , Milk/chemistry , Biosensing Techniques , Neural Networks, Computer
8.
Europace ; 26(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38619048

ABSTRACT

AIMS: A three-dimensional electroanatomic mapping system-guided transseptal puncture (3D-TSP), without fluoroscopy or echocardiography, has been only minimally reported. Indications for 3D-TSP remain unclear. Against this background, this study aims to establish a precise technique and create a workflow for validating and selecting eligible patients for fluoroless 3D-TSP. METHODS AND RESULTS: We developed a new methodology for 3D-TSP based on a unipolar electrogram derived from a transseptal needle tip (UEGM tip) in 102 patients (the derivation cohort) with intracardiac echocardiography (ICE) from March 2018 to February 2019. The apparent current of injury (COI) was recorded at the muscular limbus of the foramen ovalis (FO) on the UEGM tip (sinus rhythm: 2.57 ± 0.95 mV, atrial fibrillation: 1.92 ± 0.77 mV), which then disappeared or significantly reduced at the central FO. Changes in the COI, serving as a major criterion to establish a 3D-TSP workflow, proved to be the most valuable indicator for identifying the FO in 99% (101/102) of patients compared with three previous techniques (three minor criteria) of reduction in atrial unipolar or bipolar potential and FO protrusion. A total of 99.9% (1042/1043) patients in the validation cohort underwent successful 3D-TSP through the workflow from March 2019 to July 2023. Intracardiac echocardiography guidance was required for 6.6% (69/1042) of patients. All four criteria were met in 740 patients, resulting in a 100% pure fluoroless 3D-TSP success rate. CONCLUSION: In most patients, fluoroless 3D-TSP was successfully achieved using changes in the COI on the UEGM tip. Patients who met all four criteria were considered suitable for 3D-TSP, while those who met none required ICE guidance.


Subject(s)
Atrial Fibrillation , Electrophysiologic Techniques, Cardiac , Imaging, Three-Dimensional , Punctures , Humans , Male , Female , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Electrophysiologic Techniques, Cardiac/methods , Aged , Middle Aged , Catheter Ablation/methods , Catheter Ablation/instrumentation , Needles , Heart Septum/surgery , Heart Septum/diagnostic imaging , Workflow , Echocardiography
9.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600745

ABSTRACT

With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.

11.
J Hum Genet ; 69(6): 245-253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429412

ABSTRACT

Gastroesophageal reflux disease (GERD) is a prevalent chronic ailment, and present therapeutic approaches are not always effective. This study aimed to find new drug targets for GERD and Barrett's esophagus (BE). We obtained genetic instruments for GERD, BE, and 2004 plasma proteins from recently published genome-wide association studies (GWAS), and Mendelian randomization (MR) was employed to explore potential drug targets. We further winnowed down MR-prioritized proteins through replication, reverse causality testing, colocalization analysis, phenotype scanning, and Phenome-wide MR. Furthermore, we constructed a protein-protein interaction network, unveiling potential associations among candidate proteins. Simultaneously, we acquired mRNA expression quantitative trait loci (eQTL) data from another GWAS encompassing four different tissues to identify additional drug targets. Meanwhile, we searched drug databases to evaluate these targets. Under Bonferroni correction (P < 4.8 × 10-5), we identified 11 plasma proteins significantly associated with GERD. Among these, 7 are protective proteins (MSP, GPX1, ERBB3, BT3A3, ANTR2, CCM2, and DECR2), while 4 are detrimental proteins (TMEM106B, DUSP13, C1-INH, and LINGO1). Ultimately, C1-INH and DECR2 successfully passed the screening process and exhibited similar directional causal effects on BE. Further analysis of eQTLs highlighted 4 potential drug targets, including EDEM3, PBX3, MEIS1-AS3, and NME7. The search of drug databases further supported our conclusions. Our study indicated that the plasma proteins C1-INH and DECR2, along with 4 genes (EDEM3, PBX3, MEIS1-AS3, and NME7), may represent potential drug targets for GERD and BE, warranting further investigation.


Subject(s)
Barrett Esophagus , Gastroesophageal Reflux , Genome-Wide Association Study , Mendelian Randomization Analysis , Quantitative Trait Loci , Humans , Barrett Esophagus/genetics , Barrett Esophagus/drug therapy , Barrett Esophagus/pathology , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/drug therapy , Genetic Predisposition to Disease , Protein Interaction Maps/genetics , Polymorphism, Single Nucleotide
12.
Front Pharmacol ; 15: 1344828, 2024.
Article in English | MEDLINE | ID: mdl-38455964

ABSTRACT

Background and aim: Rivaroxaban is an emerging oral anticoagulant for postoperative anticoagulation after percutaneous left atrial appendage closure (LAAC). Because a once-daily dosing regimen of rivaroxaban causes fluctuations in the drug plasma concentration, we studied the feasibility and safety of twice-daily rivaroxaban as a postoperative anticoagulation regimen for patients with atrial fibrillation (AF) undergoing LAAC. Methods: This study involved patients with AF who underwent LAAC and took rivaroxaban postoperatively. A total of 326 patients who received a standard total dose (15 or 20 mg) of rivaroxaban based on their creatinine clearance rate were divided into the twice-daily (BID) rivaroxaban group (n = 208) and once-daily (QD) rivaroxaban group (n = 118) according to their anticoagulation strategy. Transesophageal echocardiography was recommended at 3-6 months postoperatively to check for device-related thrombosis (DRT). Clinical outcomes were evaluated during postoperative anticoagulation. Results: The median CHA2DS2-VASc score (4 [3, 5] vs. 4 [3, 5], p = 0.28) and HAS-BLED score (2 [2, 3] vs. 2 [2, 3], p = 0.48) were not significantly different between the groups. During the anticoagulation period (4.1 ± 0.7 vs. 4.1 ± 0.9 months, p = 0.58), 148 (71.2%) patients in the BID group and 75 (63.6%) in the QD group underwent follow-up transesophageal echocardiography. There were no statistically significant differences between the two groups in terms of DRT (1.4% vs. 2.7%, p = 0.60), minor bleeding (8.2% vs. 11.0%, p = 0.39), thromboembolic events (1.0% vs. 0.8%, p = 1.00), major bleeding (0.5% vs. 0.8%, p = 1.00), or death. Conclusion: A short course of twice-daily rivaroxaban following LAAC is a feasible alternative regimen with a low rate of major bleeding events, DRT, and thromboembolic events for patients with AF.

13.
J Agric Food Chem ; 72(8): 4405-4414, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357784

ABSTRACT

The photothermal lateral flow immunoassay (LFIA) is of great significance to suitable for on-site semiquantitative detection, which has the upper hand in further constructing detection methods for low-concentration targets. Herein, we presented a doping engineering-powered nanoheterostructure with an enhanced photothermal performance strategy, employing bimetallic nanocuboid Pt3Sn (PSNCs) as a proof of concept. With the help of finite element simulation analysis, the contrast of direct temperature experiment, and the evaluation of photothermal conversion efficiency (η), the distinguished and enthusiastic photothermal feedback of PSNCs is proved. Based on steady bright black of colorimetric and superior photothermal performance, the PSNCs were employed to construct an ultrasensitive model LIFA for detecting Salmonella typhimurium (S. typhimurium), which achieved the double-signal semiquantitative detection, the detection limit reached 103 cfu mL-1 (colorimetric mode) and 102 cfu mL-1 (photothermal mode), which is 100 times higher than that of the traditional colloidal gold method. In addition, the method was effective for the detection of targets in dairy samples only through a simple dilution treatment, which was completed within 15 min. Meanwhile, this PSNCs dual-signal LFIA demonstrated the sensitive detection of S. typhimurium due to the excellent colorimetric signal and significant photothermal performance, which provides a broad spectrum for the future detection of foodborne pathogens.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Animals , Salmonella typhimurium , Immunoassay , Milk , Metal Nanoparticles/chemistry , Limit of Detection
14.
J Agric Food Chem ; 72(9): 4493-4517, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38382051

ABSTRACT

With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.


Subject(s)
Calcium Compounds , Food Analysis , Nanoparticles , Oxides , Titanium , Prospective Studies , Food Quality
15.
Food Chem ; 441: 138374, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38219366

ABSTRACT

In this work, an ultra-sensitive lateral flow immunoassay (LFIA) with SERS/colorimetric dual signal mode was constructed for the detection of nitrofurazone metabolites, an antibiotic prohibited in animal-origin foods. Au@4-MBN@AgNRs nano-sandwich structural signal tag integrates the unique advantages of high signal-to-background ratio and anti-matrix interference through geometric control of SERS tag and nanoengineering adjustment of chemical composition. Under the optimal conditions, the detection limits of nitrofurazone metabolites by SERS/colorimetric dual-mode LFIA were 20 pg/mL (colorimetric mode) and 0.08 pg/mL (SERS mode). Excitingly, the vLOD of the colorimetric signal improved by a factor of 100 compared to Au NPs-based LFIA. In this study, the proposed dual-mode LFIA was successfully applied to the on-site real-time detection of honey, milk powder, and chicken. It is anticipated that with low background interference and anti-matrix interference output signal, our proposed dual-mode strategy can pave an innovative pathway for the fabrication of a powerful biosensor.


Subject(s)
Metal Nanoparticles , Nitrofurazone , Animals , Gold/chemistry , Immunoassay , Anti-Bacterial Agents , Colorimetry , Metal Nanoparticles/chemistry , Limit of Detection , Spectrum Analysis, Raman
16.
Int J Cardiol ; 398: 131641, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38065328

ABSTRACT

BACKGROUND: The MemoLefort is a new plug occluder for left atrial appendage closure (LAAC) in patients with atrial fibrillation (AF). This study compares the safety and efficacy of MemoLefort and the well-established Watchman occluder for LAAC. METHODS: Between January 2021 and September 2022, a cohort of 189 consecutive patients who underwent LAAC with MemoLefort or Watchman at The Second Affiliated Hospital of Wenzhou Medical University were included. Patients with MemoLefort or Watchman devices were compared in terms of the primary safety endpoints encompassing major periprocedural complications and major bleeding events at follow-up, the primary efficacy endpoint of all-cause stroke, systemic embolism and cardiovascular/unexplained death, and the combined hazard endpoint, a composite of all the above-mentioned hazards. RESULTS: Of the MemoLefort group (n = 83) and Watchman group (n = 106), the mean age, CHA2DS2-VASc score, and HAS-BLED score were 67.6 ± 9.2 vs. 69.0 ± 10.6 years, 3.9 ± 1.9 vs. 3.8 ± 1.9, and 1.6 ± 1.0 vs. 1.7 ± 1.2, respectively. After a median follow-up duration of 198 (99-329) vs. 334 (171-497) days, the primary endpoints of efficacy [2/49, 4.1% (MemoLefort) vs. 2/97, 2.1% (Watchman); hazard ratio (HR), 1.50; 95% confidence interval (CI), 0.20-11.08; P = 0.68] and safety (1/49, 2.0% vs. 5/97, 5.2%; HR, 0.26; 95% CI, 0.05-1.31; P = 0.19), as well as the combined hazard endpoint (3/49, 61% vs. 6/97, 6.2%; HR, 0.70; 95% CI, 0.18-2.58; P = 0.59) were similar between groups. CONCLUSIONS: In the short term, LAAC with MemoLefort provided similar efficacy, safety, and net clinical benefit in comparison to Watchman devices.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Stroke , Humans , Treatment Outcome , Left Atrial Appendage Closure , Atrial Appendage/diagnostic imaging , Atrial Appendage/surgery , Stroke/epidemiology , Stroke/etiology , Stroke/prevention & control , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Atrial Fibrillation/complications , Anticoagulants
17.
Colloids Surf B Biointerfaces ; 234: 113640, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042109

ABSTRACT

A tannate-iron network-derived peroxidase-like catalyst loaded with Fe ions on carbon nitride (C3N4) was reported for detection of total antioxidant capacity (TAC) in food in this study. Metal-phenolic networks (MPNs) was employed to form a low coordination compound on C3N4, and calcined catalyst formed hollow structure with abundant and uniform Fe sites and surface folds. CN-FeC exhibited significant peroxidase-like activity and high substrate affinity. The homogeneous distribution of amorphous Fe elements on the C3N4 substrate provides more active sites, resulting in provided excellent catalytic activity to activate H2O2 to ·OH, 1O2 and O2·-. The established CN-FeC/TMB/H2O2 colorimetric system can detect AA in the concentration range of 5-40 µM, with the detection limits of 1.40 µM, respectively. It has good accuracy for the detection of vitamin C tablets, beverages. Taken together, this work shows that metal-phenolic networks can be an effective way to achieve efficient utilization of metal atoms and provides a promising idea for metal-phenolic networks in nanoparticle enzyme performance enhancement.


Subject(s)
Antioxidants , Nanoparticles , Hydrogen Peroxide/chemistry , Peroxidase/chemistry , Peroxidases/chemistry , Nanoparticles/chemistry , Colorimetry/methods , Iron
18.
Phys Chem Chem Phys ; 25(45): 31363-31373, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37961825

ABSTRACT

Nonadiabatic molecular dynamics simulations with a global switching algorithm have been performed at the TD-CAM-B3LYP-D3/def2-SVP level of theory for ultrafast photo-induced ring-opening and isomerization reactions upon S1 excitation for 2,2-diphenyl-2H-chromene (DPC). Both DPC-T and DPC-C conformers undergo ring-opening relaxation and isomerization pathways accompanied with pyran conformation conserved and converted on the S1 or S0 states via competition and cooperation between C-O bond dissociation and pyran inversion motions. Upon S1 excitation, the DPC-T mainly relaxes to the T-type conical intersection region and thus yields a higher ring-opening efficiency with a faster S1 decay and intermediate formation than those of the DPC-C mainly relaxing to C-type conical intersection. The simulated ring-opening quantum yield for DPC-T (DPC-C) is 0.91 (0.76), which is in good agreement with the experimental value of 0.7-0.9, and the thermal weight averaged lifetimes are estimated as 182.0 fs, 228.6 fs, and 1262.4 fs for the excited-state decay, intermediate formation, and ring-opening product, respectively. These time constants are in good agreement with the experimentally measured τ1 time constant of 190-450 fs and τ2 time constant of 1000-1800 fs. The present work could be a valuable reference for understanding the nature of the photorelaxation mechanisms of DPC, and could help to develop DPC-based photoresponsive materials.

19.
Pacing Clin Electrophysiol ; 46(12): 1478-1483, 2023 12.
Article in English | MEDLINE | ID: mdl-37943004

ABSTRACT

BACKGROUND: Patients with non-valvular atrial fibrillation (NVAF) and previous stroke have a significantly higher risk of stroke recurrence. This study aimed to examine the safety and efficacy of the LAmbre left atrial appendage occlusion device in NVAF patients with a history of stroke. METHODS: We examined 103 consecutive NVAF patients in 11 Chinese medical centers who had a history of stroke or transient ischemic attacks (TIA) and underwent placement of the LAmbre device. Follow-up was conducted 1, 3, 6, and 12 months after the procedure. The primary endpoints were the incidence of new ischemic or hemorrhagic stroke, TIA, systemic embolism, or cardiac death. Secondary endpoints were serious perioperative or device-related complications and cerebral, gastrointestinal, or other bleeding events requiring transfusion of at least 2 units of packed red blood cells. RESULTS: Mean patient age was 67.63 ± 7.14 years; mean CHA2DS2-VASc score was 4.72 ± 1.18 and mean HAS-BLED score was 1.90 ± 1.00. LAmbre device placement was successful in 101 patients (98.05%). Mean follow-up was 12.2 months. Five patients (4.95%) developed a new pericardial effusion after the procedure; none required treatment. Eighty-six patients (85.15%) exhibited no peri-device leak (PDL). However, 13 (12.8%) had a small (0-3 mm) PDL and two (2.3%) had a moderate PDL (3-5 mm). One recurrent stroke occurred during follow-up (1.1%). No other complications occurred. CONCLUSIONS: This multicenter study shows the safety and efficacy of LAmbre left atrial appendage occlusion for NVAF patients with a history of stroke or TIA.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Humans , Middle Aged , Aged , Atrial Fibrillation/complications , Atrial Fibrillation/surgery , Ischemic Stroke/complications , Atrial Appendage/surgery , Ischemic Attack, Transient/complications , Stroke/epidemiology , Stroke/prevention & control , Stroke/complications , Treatment Outcome
20.
Biosens Bioelectron ; 229: 115239, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965382

ABSTRACT

Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.


Subject(s)
Biosensing Techniques , Salmonella enteritidis , Reproducibility of Results , Immunoassay/methods , Antibodies , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL