Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Cell Biochem Funct ; 42(5): e4087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953407

ABSTRACT

ß-Nicotinamide mononucleotide (NMN) is a biologically active nucleotide that regulates the physiological metabolism of the body by rapidly increasing nicotinamide adenine dinucleotide (NAD+). To determine the safety and biological activity of NMN resources, we constructed a recombinant strain of P. pastoris that heterologously expresses nicotinamide-phosphate ribosyltransferase (NAMPT), and subsequently catalyzed and purified the expressed product to obtain NMN. Consequently, this study established a high-fat diet (HFD) obese model to investigate the lipid-lowering activity of NMN. The findings showed that NMN supplementation directly increased the NAD+ levels, and reduced HFD-induced liver injury and lipid deposition. NMN treatment significantly decreased total cholesterol (TC) and triglyceride (TG) in serum and liver, as well as alanine aminotransferase (ALT) and insulin levels in serum (p < .05 or p < .01). In conclusion, this study combined synthetic biology with nutritional evaluation to confirm that P. pastoris-generated NMN modulated lipid metabolism in HFD mice, offering a theoretical framework and evidence for the application of microbially created NMN.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Lipid Metabolism/drug effects , Mice , Liver/metabolism , Male , Nicotinamide Phosphoribosyltransferase/metabolism
2.
Adv Sci (Weinh) ; : e2400586, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984490

ABSTRACT

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.

3.
Int J Biol Macromol ; 275(Pt 2): 133714, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977051

ABSTRACT

The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2-3 times. Selenium exists in two predominant forms within A. oryzae A02: selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.

4.
Small ; : e2404066, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837665

ABSTRACT

Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.

5.
Int J Biol Macromol ; : 133351, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38945713

ABSTRACT

The current food packaging films can be preservative but lack the function of combining antibacterial and sterilization which lead to films can not maximize prolong shelf life of perishable foods. This study provided a new strategy to realize prolonging shelf life of perishable foods by integrating antibacterial and sterilization which focused on applying photodynamic inactivation to films with continuous activity, where curcumin (CUR) and sodium copper chlorophyll (SCC) were loaded into chitosan (CS) films. Compared to pure CS films, the barrier capacity (oxygen permeability and water vapor permeability) and mechanical properties of composite films were improved by introducing CUR and SCC. In addition, the composite film can effectively against food-borne pathogenic bacteria and significantly prolong the shelf life of cherries and pork. The provided strategy has potential application prospects in food preservation packaging.

6.
Redox Biol ; 74: 103234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861834

ABSTRACT

Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.


Subject(s)
Astrocytes , Ischemic Stroke , Reperfusion Injury , Astrocytes/metabolism , Astrocytes/pathology , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Humans , Male , Glycogen/metabolism , Disease Models, Animal , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Signal Transduction , Autophagy
7.
Phytomedicine ; 132: 155632, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38851985

ABSTRACT

BACKGROUND: Type 2 cardiorenal syndrome (CRS) is a progressive renal insufficiency in patients with chronic heart failure, but its pathophysiology is still unclear. The Chinese medicine Zhenwu Decoction plays an important role in the prevention and treatment of 2-CRS, however, its mechanism of action remains unknown. PURPOSE: The aim of this study was to investigate whether the ameliorative effect of ZWD on 2-CRS renal fibrosis is related to the modulation of miR-451 expression and thus mediating the TLR4/NF-κB/HIF-1α loop. STUDY DESIGN AND METHODS: A type 2 CRS rat model was constructed using ligation of the left anterior descending branch of the coronary artery + 3/4 nephrectomy, and randomly divided into Control, Sham, Model, Captopril, ZWD-L, ZWD-M and ZWD-H groups.After 4 weeks of ZWD intervention, its effects on cardiac and renal functions of type 2 CRS rats were observed by hematuria and cardiac ultrasonography. Changes in kidney tissue morphology were observed by HE, Masson and PASM staining. The protein and mRNA expression of TLR4, NF-κB, HIF-1α and IκBα in kidney tissues were detected by immunohistochemistry and qPCR. Immunofluorescence was used to detect the protein expression of NF-κB and HIF-1α in renal tissues. Western blot and qPCR were used to detect the protein expression of MCP-1, ICAM-1, IL-1ß, IL-6, TGF-ß, α-SMA, FN, Smad2, Smad3, and E-cadherin in renal tissues. PCR was used to detect the protein expression of miR-451mRNA expression level in kidney tissues. RESULTS: In this study, we found that ZWD was able to reduce the expression of Scr, BUN, NT-proBNP, and 24-hour quantitative urine protein, elevate LVEF, FS, CO, and reduce the level of LVIDS in type 2 CRS rats, as well as attenuate renal interstitial fibrosis and improve tubular swelling. In addition, Zhenwu Decoction up-regulated the expression of miR-451 in renal tissues and inhibited the expression of TLR4, NF-κB, and HIF-1α proteins and genes, which in turn inhibited the expression of inflammatory factors and fibrosis-related factors. CONCLUSION: ZWD was able to up-regulate the expression of miR-451 in renal tissues, inhibit the TLR4/NF-κB/HIF-1α response loop, and then inhibit the expression of inflammatory factors and fibrosis-related factors, improve renal fibrosis, and delay the pathological process of type 2 CRS.

8.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714948

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Subject(s)
Epitopes, T-Lymphocyte , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Vaccines, DNA , Viral Vaccines , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Phlebovirus/immunology , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Severe Fever with Thrombocytopenia Syndrome/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Computer-Aided Design , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Animals , Computational Biology
9.
J Leukoc Biol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748684

ABSTRACT

Neutrophils are essential cells involved in inflammation. However, the specific mechanism of neutrophil chemotaxis induced by Treponema Pallidum (T. pallidum) remains unknow. In this study, human umbilical vein endothelial cells (HUVECs) were utilized as target cells to investigate the expression levels of chemokines when stimulated with different concentrations of Tp0768(also known as TpN44.5 or TmpA, a T. pallidum infection dependent antigen). The results indicated that Tp0768 treatment enhanced neutrophil chemotaxis in HUVECs, which was closely associated with the expression levels of CXCL1(C-X-C Motif Chemokine Ligand 1), CXCL2(C-X-C Motif Chemokine Ligand 2), and CXCL8(C-X-C Motif Chemokine Ligand 8, also known as interleukin-8). At the same time, the results show that Toll Like Receptor 2 (TLR2) signaling pathway is activated and endoplasmic reticulum stress (ER stress) occurs. Furthermore, the findings revealed that the use of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and Immunoglobulin-Regulated Enhancer 1 (IRE1) inhibitors reduced the expression levels of CXCL1, CXCL2, and CXCL8. Additionally, inhibiting TLR2 significantly decreased the expression levels of ER stress-related proteins (PERK and IRE1), CXCL1, CXCL2, and CXCL8. Consequently, neutrophil chemotaxis was significantly inhibited after treatment with TLR2, PERK, and IRE1 inhibitors. These findings shed light on the role of Tp0768 in enhancing neutrophil chemotaxis in endothelial cells, providing a foundation for further exploration of syphilis pathogenesis and offering a new direction for the diagnosis and treatment of T. pallidum infection.

10.
Cell Commun Signal ; 22(1): 285, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790068

ABSTRACT

Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.


Subject(s)
Aging , Animals , Humans , Aging/genetics , Aging/pathology , Caloric Restriction , DNA Damage , Longevity , Mitochondria/metabolism , Therapeutics
11.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786088

ABSTRACT

Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise.


Subject(s)
Cell Death , Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Animals , Apoptosis , Pyroptosis , Necroptosis/genetics
12.
Biomed Pharmacother ; 175: 116682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703507

ABSTRACT

The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. ß-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum , Fatty Liver , Insulin Resistance , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum/metabolism , Male , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Nicotinamide Mononucleotide/pharmacology , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Signal Transduction
13.
Ecotoxicol Environ Saf ; 277: 116269, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657460

ABSTRACT

This study aimed to determine the toxic effects of vascular CCM3 gene deficiency and lead (Pb) exposure on the nervous system. Lentiviral transfection was performed to generate a stable strain of brain microvascular endothelial cells with low CCM3 expression. MTT assay assessed the survival rate of cells exposed to Pb, determining the dose and duration of Pb exposure in vitro. Proteomic analysis was performed on the differentially expressed proteins in bEnd3 and HT22 cells and flow cytometry was used to detect cell apoptosis. Finally, urine samples from pregnant and postpartum women were subjected to ICP-MS to detect Pb levels and HPLC to detect neurotransmitter metabolites. Based on the proteomic analysis of bEnd3 (CCM3-/-) cells co-cultured with HT22 cells, it was determined that HT22 cells and CCM3 genes interfered with bEnd3 cell differential proteins,2 including apoptosis and ferroptosis pathways. Electron microscopy observation, ICP-MS iron ion loading detection, and WB determination of protein GPX4 expression confirmed that HT22 cells undergo apoptosis, while bEnd3 cells undergo multiple pathways of iron death and apoptosis regulation. Furthermore, a linear regression model showed the interaction between maternal urine Pb levels, the rs9818496 site of the CCM3 SNP in peripheral blood DNA, and the concentration of the neurotransmitter metabolite 5-HIAA in maternal urine (F=4.198, P < 0.05). bEnd3 cells with CCM3 gene deficiency can induce HT22 cell apoptosis through iron death and apoptosis pathways under Pb exposure in a combined cell culture Pb exposure model, and CCM3 gene deficiency in endothelial cells and Pb exposure interacts with neural cell HT22. Epidemiological studies on maternal and newborn infants further confirmed the interaction between urine Pb levels in mothers and the SNP rs9818496 site of the CCM3 gene in peripheral blood DNA.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Lead , Lead/toxicity , Lead/blood , Humans , Female , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Pregnancy , Animals , Endothelial Cells/drug effects , Proto-Oncogene Proteins/genetics , Mice , Cell Line , Neurotoxicity Syndromes/genetics , Adult , Proteomics , Membrane Proteins
14.
Antioxidants (Basel) ; 13(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38671842

ABSTRACT

Under normal physiological conditions, reactive oxygen species (ROS) are produced through redox reactions as byproducts of respiratory and metabolic activities. However, due to various endogenous and exogenous factors, the body may produce excessive ROS, which leads to oxidative stress (OS). Numerous studies have shown that OS causes a variety of pathological changes in cells, including mitochondrial dysfunction, DNA damage, telomere shortening, lipid peroxidation, and protein oxidative modification, all of which can trigger apoptosis and senescence. OS also induces a variety of aging-related diseases, such as retinal disease, neurodegenerative disease, osteoarthritis, cardiovascular diseases, cancer, ovarian disease, and prostate disease. In this review, we aim to introduce the multiple internal and external triggers that mediate ROS levels in rodents and humans as well as the relationship between OS, aging, and aging-related diseases. Finally, we present a statistical analysis of effective antioxidant measures currently being developed and applied in the field of aging research.

15.
Braz J Med Biol Res ; 57: e13359, 2024.
Article in English | MEDLINE | ID: mdl-38656075

ABSTRACT

We aimed to develop a prognostic model for primary pontine hemorrhage (PPH) patients and validate the predictive value of the model for a good prognosis at 90 days. A total of 254 PPH patients were included for screening of the independent predictors of prognosis, and data were analyzed by univariate and multivariable logistic regression tests. The cases were then divided into training cohort (n=219) and validation cohort (n=35) based on the two centers. A nomogram was developed using independent predictors from the training cohort to predict the 90-day good outcome and was validated from the validation cohort. Glasgow Coma Scale score, normalized pixels (used to describe bleeding volume), and mechanical ventilation were significant predictors of a good outcome of PPH at 90 days in the training cohort (all P<0.05). The U test showed no statistical difference (P=0.892) between the training cohort and the validation cohort, suggesting the model fitted well. The new model showed good discrimination (area under the curve=0.833). The decision curve analysis of the nomogram of the training cohort indicated a great net benefit. The PPH nomogram comprising the Glasgow Coma Scale score, normalized pixels, and mechanical ventilation may facilitate predicting a 90-day good outcome.


Subject(s)
Glasgow Coma Scale , Nomograms , Humans , Female , Male , Prognosis , Middle Aged , Adult , Respiration, Artificial , Pons , Predictive Value of Tests , Aged , Reproducibility of Results , Intracranial Hemorrhages/diagnosis , Retrospective Studies
16.
Angew Chem Int Ed Engl ; 63(24): e202403661, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38613727

ABSTRACT

The development of highly producible and interfacial compatible in situ polymerized electrolytes for solid-state lithium metal batteries (SSLMBs) have been plagued by insufficient transport kinetics and uncontrollable dendrite propagation. Herein, we seek to explore a rationally designed nanofiber architecture to balance all the criteria of SSLMBs, in which La0.6Sr0.4CoO3-δ (LSC) enriched with high valence-state Co species and oxygen vacancies is developed as electronically conductive nanofillers embedded within ZnO/Zn3N2-functionalized polyimide (Zn-PI) nanofiber framework for the first time, to establish Li+ transport highways for poly vinylene carbonate (PVC) electrolyte and eliminate nonuniform Li deposits. Revealed by characterization and theoretical calculation under electric field, the positive-negative electrical dipole layer in LSC derived from electron migration between Co and O atoms aids in accelerating Li+ diffusion kinetics through densified electric field around filler particle, featuring a remarkable ionic conductivity of 1.50 mS cm-1 at 25 °C and a high Li+ transference number of 0.91 without the risk of electron leakage. Integrating with the preferential sacrifice of ZnO/Zn3N2 on PI nanofiber upon immediate detection of dendritic Li, which takes part in reconfiguring hierarchical SEI chemistry dominated by LixNy/Li-Zn alloy inner layer and LiF outer layer, SSLMBs are further endowed with prolonged cycling lifespan and exceptional rate capability.

17.
Stem Cell Res Ther ; 15(1): 92, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539221

ABSTRACT

BACKGROUND: Previously, we have demonstrated that the batch variations of human platelet lysate (conventional MSC expansion medium) induce MSC heterogeneity and therapeutic inconsistency. On the other hand, the MSCs expanded with chemical defined medium have improved therapeutic consistency. METHODS: In the current study, we studied the MSC subpopulation composition and variation in different types and batches of MSC expansion medium with scRNA-seq analysis. RESULTS: MSCs expanded with different batches of media have higher levels of heterogeneity from the perspective of cell subpopulation composition at transcriptome levels and therapeutic inconsistency. The CD317+ subpopulation has enhanced immune suppression activities. And the percentage of CD317+ MSCs within MSCs is tightly correlated with its immune suppression activities, and also contributes to the heterogeneity and therapeutic inconsistency of MSCs. the CD317+ MSCs have increased expression levels of PTX3, which might stabilize the TSG6 protein and improve the therapeutic effects CONCLUSIONS: Thus, purifying CD317+ MSCs is one efficient strategy to reduce MSC heterogeneity and increase the therapeutic consistency of MSCs.


Subject(s)
Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Signal Transduction , Cell Proliferation , Cell Differentiation
18.
J Agric Food Chem ; 72(12): 6754-6761, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470333

ABSTRACT

Inappropriate use of veterinary drugs can result in the presence of antibiotic residues in animal-derived foods, which is a threat to human health. A simple yet efficient antibiotic-sensing method is highly desirable. Programmable DNA amplification circuits have supplemented robust toolkits for food contaminants monitoring. However, they currently face limitations in terms of their intricate design and low signal gain. Herein, we have engineered a robust reciprocal catalytic DNA (RCD) circuit for highly efficient bioanalysis. The trigger initiates the cascade hybridization reaction (CHR) to yield plenty of repeated initiators for activating the rolling circle amplification (RCA) circuit. Then the RCA-generated numerous reconstituted triggers can reversely stimulate the CHR circuit. This results in a self-sufficient supply of numerous initiators and triggers for the successive cross-invasion of CHR and RCA amplifiers, thus leading to exponential signal amplification for the highly efficient detection of analytes. With its flexible programmability and modular features, the RCD amplifier can serve as a universal toolbox for the high-performance and accurate sensing of kanamycin in buffer and food samples including milk, honey, and fish, highlighting its enormous promise for low-abundance contaminant analysis in foodstuffs.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Animals , Humans , Kanamycin/analysis , Anti-Bacterial Agents/analysis , Nucleic Acid Hybridization/methods , Fishes/metabolism , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection
19.
BMC Complement Med Ther ; 24(1): 124, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500092

ABSTRACT

BACKGROUND AND AIMS: Recent studies have shown that intestinal flora are involved in the pathological process of ischemic stroke (IS). The potential protective effect of the traditional Chinese prescription, Tao Hong Si Wu Decoction (THSWD), against inflammatory injury after IS and its underlying mechanisms of action were investigated in the current study. METHODS: Fifty SPF(Specefic pathogen Free) male C57 mice were randomly assigned to sham operation, model, THSWD low-dose (6.5 g/kg), medium-dose (13 g/kg) and high-dose (26 g/kg) groups (10 mice per group). Mouse models of transient middle cerebral artery occlusion were prepared via thread embolism. Neurological function score, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), 16S ribosomal DNA (rDNA) sequencing, quantitative reverse transcription PCR (qRT-PCR) and other methods were employed to elucidate the underlying molecular mechanisms. RESULTS: Notably, THSWD induced a reduction in the neurological function score (P < 0.01) and neuronal injury in brain tissue, increase in protein expression of Claudin-5 and zonula occludens-1 (ZO-1) in brain tissue(P < 0.01), and decrease in serum lipopolysaccharide (LPS)(P < 0.01), diamine oxidase (DAO)(P < 0.01) and D-lactic acid(P < 0.01, P < 0.05) levels to a significant extent. THSWD also inhibited the levels of tumor necrosis factor-α (TNF-α)(P < 0.01) and interleukin - 1ß (IL-1ß)(P < 0.01) in brain tissue, and increased alpha and beta diversity in ischemic stroke mice, along with a certain reversal effect on different microflora. Finally, THSWD inhibited the polarization of microglia cells(P < 0.01) and decreased the protein and gene expression of toll-like receptor-4 (TLR-4)(P < 0.01, P < 0.05) and nuclear factor kappa B (NF-κB)(P < 0.01) in brain tissue. CONCLUSION: Our data indicate that THSWD may interfere with inflammatory response in ischemic stroke by regulating intestinal flora and promoting intestinal barrier repair.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Ischemic Stroke , Mice , Male , Animals , Drugs, Chinese Herbal/pharmacology , NF-kappa B/metabolism
20.
Sci Data ; 11(1): 297, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491031

ABSTRACT

Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.


Subject(s)
Poa , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Poa/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL