Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Stem Cell Res Ther ; 15(1): 107, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637896

ABSTRACT

BACKGROUND: The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS: A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS: We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS: For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.


Subject(s)
Serotonin , Transcription Factors , Humans , Transcription Factors/genetics , Cell Differentiation/genetics , Gene Expression Profiling , Neurons , Genes, Reporter
2.
Fish Physiol Biochem ; 50(2): 687-703, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38285408

ABSTRACT

Skeletal muscle is the mainly edible part of fish. Eicosapentaenoic acid (EPA) is a crucial nutrient for fish. This study investigated the effect of EPA on the muscle development of grass carp along with the potential molecular mechanisms in vivo and in vitro. Muscle cells treated with 50 µM EPA in vitro showed the elevated proliferation, and the expression of mammalian target of rapamycin (mTOR) signaling pathway-related genes was upregulated (P < 0.05). In vivo experiments, 270 grass carp (27.92 g) were fed with one of the three experimental diets for 56 days: control diet (CN), 0.3% EPA-supplement diet (EPA), and the diet supplemented with 0.3% EPA and 30 mg/kg rapamycin (EPA + Rap). Fish weight gain rate (WGR) was improved in EPA group (P < 0.05). There was no difference in the viscerosomatic index (VSI) and body height (BH) among all groups (P > 0.05), whereas the carcass ratio (CR) and body length in the EPA group were obviously higher than those of other groups (P < 0.05), indicating that the increase of WGR was due to muscle growth. In addition, both muscle fiber density and muscle crude protein also increased in EPA group (P < 0.05). The principal component analysis showed that total weight of muscle amino acid in EPA group ranked first. Dietary EPA also increased protein levels of the total mTOR, S6k1, Myhc, Myog, and Myod in muscle (P < 0.05). In conclusion, EPA promoted the muscle development and nutritive value via activating the mTOR signaling pathway.


Subject(s)
Carps , Eicosapentaenoic Acid , Animals , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/analysis , Carps/metabolism , Signal Transduction , Diet , Muscle, Skeletal/metabolism , Dietary Proteins , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Muscle Development , Nutritive Value , Animal Feed/analysis , Fish Proteins/genetics , Mammals/metabolism
3.
Plants (Basel) ; 12(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068692

ABSTRACT

While transgenic Bacillus thuringiensis (Bt) maize provides pest resistance and a reduced application of chemical pesticides, a comprehensive environmental risk assessment is mandatory before its field release. This research determined the concentrations of Bt protein in plant tissue and in arthropods under field conditions in Gongzhuling City, northeastern China, to provide guidance for the selection of indicator species for non-target risk assessment studies. Bt maize expressing Cry1Ab/2Aj and non-transformed near-isoline were grown under identical environmental and agricultural conditions. Cry1Ab/2Aj was detected in plant tissues and arthropods collected from Bt maize plots during pre-flowering, flowering, and post-flowering. The expression of Cry1Ab/2Aj varied across growth stages and maize tissues, as well as in the collected arthropods at the three growth stages. Therefore, representative species should be chosen to cover the whole growing season and to represent different habitats and ecological functions. Dalbulus maidis (Hemiptera: Cicadellidae), Rhopalosiphum padi (Hemiptera: Aphididae), Heteronychus arator (Coleoptera: Scarabaeidae), and Somaticus angulatus (Coleoptera: Tenebrionidae) are suitable non-target herbivores. Propylea japonica (Coleoptera: Coccinellidae), Paederus fuscipes (Coleoptera: Staphylinidae), Chrysoperla nipponensis (Neuroptera: Chrysopidae), and spiders are suggested predators. Apis cerana and Apis mellifera ligustica (both Hymenoptera: Apidae) represent pollinators and Folsomia candida (Collembola: Isotomidae) decomposers.

4.
Microbiol Spectr ; 11(6): e0097523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815335

ABSTRACT

IMPORTANCE: The type 3 secretion system (T3SS) was obtained in many Gram-negative bacterial pathogens, and it is crucial for their pathogenesis. Environmental signals were found to be involved in the expression regulation of T3SS, which was vital for successful bacterial infection in the host. Here, we discovered that L-glutamine (Gln), the most abundant amino acid in the human body, could repress enterohemorrhagic Escherichia coli (EHEC) T3SS expression via nitrogen metabolism and therefore had potential as an antivirulence agent. Our in vitro and in vivo evidence demonstrated that Gln could decline EHEC infection by attenuating bacterial virulence and enhancing host defense simultaneously. We repurpose Gln as a potential treatment for EHEC infection accordingly.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Intestinal Diseases , Humans , Virulence , Virulence Factors/metabolism , Glutamine/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Type III Secretion Systems/metabolism , Enterohemorrhagic Escherichia coli/metabolism
5.
Environ Sci Pollut Res Int ; 30(46): 102880-102893, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37670093

ABSTRACT

The escalating levels of surface ozone concentration pose detrimental effects on public health and the environment. Catalytic decomposition presents an optimal solution for surface ozone removal. Nevertheless, catalyst still encounters challenges such as poisoning and deactivation in the high humidity environment. The influence of support on catalytic ozone decomposition was examined at a gas hourly space velocity of 300 L·g-1·h-1 and 85% relative humidity under ambient temperature using Cu-Mn-doped oxide catalysts synthesized via a straightforward coprecipitation method. Notably, the Cu-Mn/SiO2 catalyst exhibited remarkable performance on ozone decomposition, achieving 98% ozone conversion and stability for 10 h. Further characterization analysis indicated that the catalyst's enhanced water resistance and activity could be attributed to factors such as an increased number of active sites, a large surface area, abundant active oxygen species, and a lower Mn oxidation state. The catalytic environment created by mixed oxides can offer a clearer understanding of their synergistic effects on catalytic ozone decomposition, providing significant insights into the development of water-resistant catalysts with superior performance.

6.
ACS Omega ; 8(25): 22637-22645, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396265

ABSTRACT

The concept of diastereoselectivity switch in gold catalysis is investigated, which primarily depends on the effects of ligand and counterion. The origins of gold-catalyzed post-Ugi ipso-cyclization for the diastereoselective synthesis of spirocyclic pyrrol-2-one-dienone have been explored with density functional theory calculations. The reported mechanism emphasized the importance of the cooperation of ligand and counterion in diastereoselectivity switch, leading to the stereocontrolling transition states. Furthermore, the nonbonding interactions primarily between the catalyst and the substrate play a significant role in the cooperation of ligand and counterion. This work would be useful to further understand the reaction mechanism of gold-catalyzed cyclization and the effects of ligand and counterion.

7.
RSC Adv ; 13(24): 16342-16351, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266498

ABSTRACT

Steam reforming for hydrogen production is one of the important research directions for clean energy. NiTiO3 catalysts with a hierarchical porous structure are prepared and applied to methanol steam reforming for hydrogen production. The results show that the optimum catalyst (10% Ni-Ti-Ox) not only has a hierarchical porous structure, but it also involves the coexistence of NiTiO3, anatase TiO2 and rutile TiO2. The formation of NiTiO3 is beneficial to the adsorption and activation of methanol molecules on the surface of the Ni-Ti-Ox catalyst, and the main intermediate species of the methanol molecular reaction are hydroxyl groups, methoxy species and formic acid species. Furthermore, the methanol steam reforming reaction is mainly dominated by methanol decomposition at low temperature (350-500 °C), while it is mainly dominated by methanol and water molecular reactions at high temperature (500-600 °C).

8.
Plants (Basel) ; 12(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176942

ABSTRACT

RNA interference (RNAi) that is triggered by small or short RNAs has shown enormous potential in the development of pest control strategies. Two microRNAs (miRNAs), Csu-novel-260 and Csu-miR-14, were used in insect-resistant genetically engineered (IRGE) rice lines to confer resistance to Chilo suppressalis. However, a risk assessment of RNAi-based products is essential to determine the safety of a biopesticide or IRGE crop for commercialization. The non-target organism Folsomia candida, which plays an important ecological role as a soil decomposer in agricultural ecosystems, was used to assess the risk of miRNAs Csu-novel-260 and Csu-miR-14. In this study, a dietary miRNA toxicity assay system was established in F. candida. The expression levels of target genes, survival rate, fecundity and body size were investigated to evaluate the effects of the miRNAs on F. candida under the worst-case scenario. The results showed that the dietary miRNA toxicity assay system could be used for risk assessment of miRNA in F. candida. The target genes of miRNAs were influenced by miRNA at some time points. However, no significant differences were observed in the life-table parameters in F. candida fed with a diet containing miRNAs. The dietary effects of two miRNAs on F. candida are neutral.

9.
J Magn Reson Imaging ; 58(6): 1714-1722, 2023 12.
Article in English | MEDLINE | ID: mdl-37078554

ABSTRACT

BACKGROUND: A novel myeloperoxidase-activatable manganese-based (MPO-Mn) MRI probe may enable the activation state of inflammatory foci to be detected and monitored noninvasively. PURPOSE: To evaluate the inflammatory response in a mouse model of acute gout using MPO as an imaging biomarker and a potential therapeutic target. STUDY TYPE: Prospective. ANIMAL MODEL: A total of 40 male Swiss mice with monosodium urate crystals induced acute gout. FIELD STRENGTH/SEQUENCE: A 3.0 T/T1-weighted imaging with 2D fast spoiled gradient recalled echo and T2-weighted imaging with fast recovery fast spin-echo sequences. ASSESSMENT: The difference in contrast-to-noise ratio between left hind limb (lesion) and right hind limb (internal reference) (ΔCNR), and normalized signal-to-noise ratio (nSNR) on the right hind limb were calculated and compared. The expression level and activity of myeloperoxidase (MPO) were analyzed using western blotting and spectrophotometric quantitation activity assay. MPO-positive cell infiltration and lesion volume were evaluated using immunofluorescence staining and T2-weighted images, respectively. STATISTICAL TESTS: Student's t test. A P-value less than 0.05 was considered to be statistically significant. RESULTS: MPO-Mn resulted in a significantly higher ΔCNR than Gd-DTPA (22.54 ± 1.86 vs. 13.90 ± 2.22) but lower nSNR on the reference right hind limb (1.08 ± 0.07 vs. 1.21 ± 0.08). Compared to the nontreatment group, MPO-inhibition resulted in a significantly reduced contrast enhancement at the lesion (17.81 ± 1.58 vs. 22.96 ± 3.12), which was consistent with a remission of the inflammatory response, as evidenced by a substantial reduction of lesion volume (0.55 ± 0.16 mm3 /g vs. 1.14 ± 0.15 mm3 /g), myeloperoxidase expression level (0.98 ± 0.09 vs. 1.48 ± 0.19) and activity (0.75 ± 0.12 vs. 1.12 ± 0.07), and inflammatory cell recruitment. DATA CONCLUSION: MPO-Mn MRI has potential to evaluate the activation state of inflammatory foci in the experimental model of acute gout. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Contrast Media , Gout , Male , Animals , Mice , Peroxidase/metabolism , Prospective Studies , Magnetic Resonance Imaging/methods , Gout/diagnostic imaging
10.
Trends Ecol Evol ; 38(6): 509-511, 2023 06.
Article in English | MEDLINE | ID: mdl-36863968

ABSTRACT

Resource partitioning is considered to be a prerequisite for coexisting species to evolve from competition to mutualism. This is uniquely different for two major pest insects of rice. These herbivores preferentially opt to coinfest the same host plants, and through plant-mediated mechanisms, cooperatively utilize these plants in a mutualistic manner.


Subject(s)
Herbivory , Symbiosis , Plants
11.
J Hazard Mater ; 448: 130873, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36731316

ABSTRACT

In recent years, sulfite (S(Ⅳ)), as an alternative to persulfates, has played a crucial role in eliminating antibiotics in wastewater, so there is an urgent need to develop a cheap, environmentally friendly, and effective catalyst. Zero-valent iron (ZVI) has great potential for activated S(Ⅳ) removal of organic pollutants, but its reactivity in water is reduced due to passivation. In this study, a micron-scale iron-carbon composite(mZVI@C-800) prepared via high-temperature calcination was coupled with S(Ⅳ) to degrade metronidazole (MNZ). Under the optimized reaction conditions of mZVI@C-800 dosage of 0.2 g/L and S(Ⅳ) concentration of 0.1 g/L, the MNZ removal rate was up to 81.5 % in acidic and neutral environments. The surface chemical properties of the catalysts were characterized by different analytical techniques, and the corresponding catalytic mechanism was analyzed based on these analytical results. As a result, Fe2+ is the main active site, and ·OH and SO4·- were the dominant active species. The increase in efficiency was attributed to the introduction of carbon to enhance the corrosion of mZVI further releasing more Fe2+. Additionally proposed were the potential response mechanism, the degradation path, and the toxicity change rule. These results demonstrate that the catalytic breakdown of antibiotics in wastewater treatment can be accelerated by the use of the outstanding catalytic material mZVI@C-800.

12.
Exp Parasitol ; 246: 108451, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36584786

ABSTRACT

"Shi Ying Zi" powder is a traditional Chinese herbal formula for preventing and treating coccidiosis. In our previous studies, it showed anticoccidial effects and exhibited the potential to control Eimeria tenella infection. In this research, we evaluated the antioxidation and immune effect of "Shi Ying Zi" powder and its effective active ingredient osthole on coccidiosis-infected broilers to explore the mechanism of its anticoccidial effect. We analyzed changes in the antioxidant index, the pathological changes in cecum, immune index of serum and composition of cecal flora. The results showed that the use of "Shi Ying Zi" powder and osthole alleviated the pathological changes in the cecum, spleen and bursa of Fabricius, upregulated the spleen and bursal weigh index. "Shi Ying Zi" powder of 10 g/kg effectively rocovered the contents of interleukins and immunoglobulin in serum. Osthole increased the proportion of Firmicutes, Actino-bacteria and Lactobacillus in the cecum. In summary, "Shi Ying Zi" powder and osthole have anticoccidial effects, and they also can active the immunity, antioxidant functions and upregulate the beneficial bacteria population in Eimeria tenella-infected broilers.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chickens , Powders , Coccidiosis/drug therapy , Coccidiosis/veterinary , Bacteria , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Cecum/pathology
13.
New Phytol ; 237(6): 2375-2387, 2023 03.
Article in English | MEDLINE | ID: mdl-36259093

ABSTRACT

Herbivore-induced plant volatiles (HIPVs) are known to be perceived by neighboring plants, resulting in induction or priming of chemical defenses. There is little information on the defense responses that are triggered by these plant-plant interactions, and the phenomenon has rarely been studied in rice. Using chemical and molecular analyses in combination with insect behavioral and performance experiments, we studied how volatiles emitted by rice plants infested by the striped stemborer (SSB) Chilo suppressalis affect defenses against this pest in conspecific plants. Compared with rice plants exposed to the volatiles from uninfested plants, plants exposed to SSB-induced volatiles showed enhanced direct and indirect resistance to SSB. When subjected to caterpillar damage, the HIPV-exposed plants showed increased expression of jasmonic acid (JA) signaling genes, resulting in JA accumulation and higher levels of defensive proteinase inhibitors. Moreover, plants exposed to SSB-induced volatiles emitted larger amounts of inducible volatiles and were more attractive to the parasitoid Cotesia chilonis. By unraveling the factors involved in HIPV-mediated defense priming in rice, we reveal a key defensive role for proteinase inhibitors. These findings pave the way for novel rice management strategies to enhance the plant's resistance to one of its most devastating pests.


Subject(s)
Moths , Oryza , Volatile Organic Compounds , Animals , Oryza/genetics , Plants/metabolism , Insecta/metabolism , Herbivory , Peptide Hydrolases/metabolism , Volatile Organic Compounds/metabolism , Cyclopentanes/metabolism
14.
Global Spine J ; 13(3): 724-729, 2023 Apr.
Article in English | MEDLINE | ID: mdl-33783245

ABSTRACT

STUDY DESIGN: A biomechanical study. OBJECTIVES: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. METHODS: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen's annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. RESULTS: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens (P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision (P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. CONCLUSIONS: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.

15.
J Colloid Interface Sci ; 629(Pt A): 950-957, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36152619

ABSTRACT

Electrocatalytic nitrate-to-ammonia conversion (NO3RR) is a promising route to achieve both NH3 electrosynthesis and wastewater treatment. Herein, we report B-doped MoS2 nanosheet arrays as an efficient NO3RR catalyst, delivering an NH3-Faradaic efficiency of 92.3 % with the corresponding NH3 yield of 10.8 mg h-1 cm-2 at -0.7 V (RHE). Theoretical computations identify B-dopants as the pivotal active sites to enhance NO3- activation and optimize the free energies of reaction intermediates, leading to the expedited NO3RR activity. Meanwhile, the undesired hydrogen evolution can be well suppressed on B-MoS2 to render a high NO3RR selectivity.

16.
aBIOTECH ; 3(4): 237-249, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36533267

ABSTRACT

To ensure safe use of genetically modified organisms (GMOs), since 1993, China has made great efforts to establish and improve the safety regulatory system for GMOs. Here, we summarize and analyze the regulatory framework of agricultural GMOs, and the progress in regulatory approval of GM crops in China. In general, the development of GMO safety regulations underwent four stages: exploration (1993-2000), development (2001-2010), improvement (2011-2020) and current (2021-present) stage. The first formal regulation was promulgated in 1993, which provided a basis for further development of the regulations, during the exploration stage, when insect-resistant GM cotton, expressing genes from Bacillus thuringiensis (Bt), was approved for cultivation. During the development stage, the Chinese government issued a series of administrative measures, which covered almost all the fields relative to GMO safety when the basic regulatory system was established. Along with the controversy over GMO safety, the regulations have been further, and greatly improved, during improvement stage. From 2021, a few additional revisions have been made, and meanwhile, the new regulation on gene-edited crops was introduced with the development of biotechnology, forming a relative complete regulation and law system for China. The well-developed GMO regulations establishes a firm basis for safe use of GM crops in China. Currently, GM cotton and GM papaya have been widely grown on a large scale in China that have brought great economic and ecological benefits. In addition, 12 corn events, 3 soybean events, and 2 rice events have also obtained biosafety certification, but presently, these lines have yet to enter commercial production. However, several GM soybean and corn events have entered pilot industrialization, and can soon be expected to be commercially grown in China. In addition to planting, six GM crops, including soybean, corn, cotton, canola, papaya and sugar beet, with a total of 64 events, have been approved for import as processing material in China.

17.
Plants (Basel) ; 11(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36235387

ABSTRACT

Transgenic Bacillus thuringiensis (Bt) maize has broad prospects for application in China. Before commercialization, it is necessary to assess possible ecological impacts, including impacts on non-target arthropods (NTAs) in the field. In the present study, transgenic Bt maize expressing cry1Ab/2Aj and its corresponding non-transformed near isoline were planted under the same environmental and agricultural conditions, and arthropods in the field were collected during the three main growth stages of maize. In a one year trial, the results showed the composition of NTA communities in the transgenic and control maize fields were similar. There were no significant differences for community-level parameters of species richness (S), Shannon-Wiener diversity index (H'), evenness index (J) and Simpson's dominant concentration (C) between the two types of maize fields. Likewise, a Bray-Curtis dissimilarity and distance analysis showed that Cry1Ab/2Aj toxin exposure did not increase community dissimilarities between Bt and non-Bt maize plots and that the structure of the NTAs community was similar on the two maize varieties. Furthermore, planting of the transgenic cry1Ab/2Aj maize did not affect the density or composition of non-target decomposers, herbivores, predators, parasitoids and pollinator guilds. In summary, our results showed that planting of Bt maize producing Cry1Ab/Cry2Aj proteins do not adversely affect population dynamics and diversity of NTAs.

18.
JOR Spine ; 5(3): e1218, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36203863

ABSTRACT

Backgrounds: Cartilaginous endplate (CEP) plays an essential role in intervertebral disc (IVD) health and disease. The aim was to compare the CEP structure of lumbar IVD and to reveal the detailed pattern of integration between the CEP and bony endplate (BEP) from different species. Methods: A total of 34 IVDs (5 human, 5 goat, 8 pig, 8 rabbit, and 8 rat IVDs) were collected, fixed and midsagittally cut; in each IVD, one-half was used for histological staining to observe the CEP morphology, and the other half was used for scanning electron microscopy (SEM) analysis to measure the diameters and distributions of collagen fibers in the central and peripheral CEP areas and to observe the pattern of CEP-BEP integration from different species. Results: The human, pig, goat, and rabbit IVDs had the typical BEP-CEP structure, but the rat CEP was directly connected with the growth plate. Human CEP was the thickest (896.95 ± 87.71 µm) among these species, followed by pig, goat, rat, and rabbit CEPs. Additionally, the mean cellular density of the rabbit CEP was the highest, which was 930 ± 202 per mm2, followed by the rat, goat, pig, and human CEPs. In all the species, the collagen fiber diameter in the peripheral area was much bigger than that in the central area. The collagen fiber diameters of CEP from the human, pig, goat, and rat were distributed between 35 nm and 65 nm. The BEP and CEP were connected by the collagen from the CEP, aggregating into bundles or cross links with each other to form a network, and anchored to BEP. Conclusions: Significant differences in the thickness, cellular density, and collagen characterization of CEPs from different species were demonstrated; the integration of BEP-CEP in humans, pigs, goats, and rabbits was mainly achieved by the collagen bundles anchoring system, while the typical BEP-CEP interface did not exist in rats.

19.
J Inorg Biochem ; 236: 111979, 2022 11.
Article in English | MEDLINE | ID: mdl-36087435

ABSTRACT

Myeloperoxidase (MPO), a hallmark of the function and activation of innate immune cells, can act as a 'double-edged sword', contributing to clear infection as well as causing tissue oxidizing damage in various inflammatory diseases. In this study, an activatable Mn(II) chelate-based magnetic resonance imaging (MRI) contrast agent (CA), Mn-TyEDTA (TyEDTA = tyrosine derived ethylenediaminetetraacetic acid) structurally featuring a phenol group as the electron-donor, was developed to sense the activity of peroxidase in vitro and in vivo. Mn-TyEDTA demonstrated a peroxidase activity-dependent relaxivity in the presence of horseradish peroxidase (HRP)/H2O2 with more than a 2.6-fold increase in water proton relaxivity produced (HRP, 500 U; H2O2, 4.5 eq). A mechanism of peroxidase-mediated Mn(II) monomer radical polymerization was confirmed with those oligomers of Mn-TyEDTA such as dimer, trimer and tetramer were found in the LC-MS study. Dynamic MR imaging of normal mice revealed rapid blood clearance and mixed renal and hepatobiliary elimination of Mn-TyEDTA. Furthermore, compared to liver-specific and non-specific extracellular contrast agents (Mn-BnO-TyEDTA (BnO-TyEDTA = benzyl tyrosine-derived ethylenediaminetetraacetic acid) and Gd-DTPA (DTPA = diethylene triamine penta-acetic acid)), MRI on a monosodium urate (MSU) crystal-induced acute mice model of arthritis showed that inflamed tissues could be selectively enhanced by Mn-TyEDTA, suggesting that this peroxidase-activatable Mn(II) MRI probe could potentially be used for noninvasive detection of MPO activity in vivo.


Subject(s)
Contrast Media , Gadolinium DTPA , Manganese/analysis , Animals , Edetic Acid , Horseradish Peroxidase , Hydrogen Peroxide , Magnetic Resonance Imaging/methods , Mice , Peroxidase , Phenols , Protons , Tyrosine , Uric Acid , Water
20.
Front Public Health ; 10: 946299, 2022.
Article in English | MEDLINE | ID: mdl-36159305

ABSTRACT

Purpose: Lung cancer is the leading cause of death from cancer and the number of operable elderly lung cancer patients is increasing, with advanced age being associated with a poorer prognosis. However, there is no easy and comprehensive prognostic assessment method for these patients. Methods: Clinicopathological data of patients aged 65 years or older with TNM stage I-II lung cancer from 2004 to 2018 were downloaded from the SEER database. Patients from 2004 to 2015 were randomized into a training group (n = 16,457) and a validation group (n = 7,048). Data from 2016 to 2018 (n = 6,231) were used for external validation. Two nomogram prognostic models were created after independent prognostic factors connected to both overall survival (OS) and cancer-specific survival (CSS) in the training set by using univariate and multivariate Cox proportional hazards regression analysis. In turn, overall survival (OS) and cancer-specific survival (CSS) were predicted for patients at 1, 3, and 5 years. Based on the concordance index (C-index), calibration curves, area under the receiver operating characteristics (ROC) curve (AUC), the time-dependent area under the ROC curve, the validity, accuracy, discrimination, predictive ability, and clinical utility of the models were evaluated. Decision curve analysis (DCA) was used to assess the clinical value of the models. Results: A total of 29,736 patients were included. Univariate and multivariate analyses suggested that age, race, gender, marriage, disease grade, AJCC stage, T-stage, surgery, radiotherapy, chemotherapy, and tumor size were independent risk factors for patient prognosis. These 11 variables were included in nomogram to predict OS and CSS of patients. C-indexes of OS for the training, validation and external validation sets were 0.730 (95% CI, 0.709-0.751), 0.734 (95% CI, 0.722-0.746), and 0.750 (95% CI, 0.734-0.766), respectively. The AUC results for the training and validation sets indicated good accuracy for this nomogram. The calibration curves demonstrated a high degree of concordance between actual and anticipated values, and the DCA demonstrated that the nomograms had better clinical application than the traditional TNM staging approach. Conclusion: This study identified risk factors for survival in operable elderly lung cancer patients and established a new column line graph for predicting OS and CSS in these patients. The model has good clinical application and can be a good clinical decision-making tool for physicians and patients.


Subject(s)
Lung Neoplasms , Nomograms , Aged , Humans , Lung Neoplasms/therapy , Neoplasm Staging , Proportional Hazards Models , SEER Program
SELECTION OF CITATIONS
SEARCH DETAIL
...