Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(3): 1337-1348, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471850

ABSTRACT

Carbonaceous aerosol, as an important component of atmospheric aerosol, has a significant impact on atmospheric environmental quality, human health, and global climate change. To investigate the characteristics and sources of carbonaceous aerosol in atmospheric fine particulate matter (PM2.5) in Huaxi District of Guiyang, an in-situ observational study was conducted during different seasons in 2020, and the carbonaceous components of PM2.5 were measured using a thermal-optical carbon analyzer (DRI Model 2015). The results of the study showed that the average concentrations of PM2.5, total carbonaceous aerosol (TCA), organic carbon (OC), secondary organic carbon (SOC), and elemental carbon (EC) concentrations during the observation period were (39.7±22.3), (14.1±7.2), (7.6±3.9), (4.4±2.6), and (2.0±1.0) µg·m-3, respectively, and the mean value of OC/EC was (3.9±0.8). ρ(PM2.5), ρ(TCA), ρ(OC), ρ(SOC), and ρ(EC) showed a seasonal variation pattern with the highest in winter [(52.6±28.6), (17.0±9.6), (9.1±5.2), (6.1±3.9), and (2.4±1.2) µg·m-3, respectively] and the lowest in summer [(25.1±7.1), (11.6±3.6), (6.3±1.9), (3.7±1.2), and (1.6±0.6) µg·m-3, respectively]. The seasonal variation in OC/EC showed summer (4.2±0.8) > winter (3.8±0.9) > autumn (3.8±0.5) > spring (3.7±0.9), indicating the presence of SOC generation in all seasons in Huaxi District. SOC showed a significant correlation with OC (R2 =0.9), and the SOC concentration tended to increase with the increase in atmospheric oxidation. OC showed a good correlation with EC in all seasons, with the highest in autumn (R2 =0.9) and lower correlations in the other three seasons (R2 ranged from 0.74 to 0.75), indicating a common source. According to OC/EC ratio range, it was preliminarily determined that carbonaceous aerosol came from vehicle exhaust emissions, coal burning emissions, and biomass combustion emissions. In order to further quantify the contribution of major emission sources to carbonaceous aerosol, the results of this study using PMF to analyze the sources of carbonaceous aerosol showed that the main sources of carbonaceous aerosol in Huaxi District of Guiyang were coal combustion sources (29.3%), motor vehicle emission sources (21.5%), and biomass combustion sources (49.2%).

2.
Inorg Chem ; 63(4): 1962-1973, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38236237

ABSTRACT

One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 µM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 µM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 µM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.

3.
Dalton Trans ; 53(8): 3654-3665, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289280

ABSTRACT

Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 µM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.

4.
Dalton Trans ; 52(45): 16650-16660, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37905736

ABSTRACT

Metal-organic frameworks (MOFs) are promising competitive candidates as fillers for Nafion proton exchange membrane (PEM). Increasing efforts have been made to explore methods for synthesizing MOF fillers and the mechanism by which MOF doping improves the proton conductivity (σH+) values of composite membranes. In this study, a Pb(II) cation with strong polarizing force was selected for the hydrothermal reaction with a simple sulfoterephthalate ligand (H3L). Pb-MOF [Pb2L(OH)]n was obtained, which was constructed using Pb-O layers and deprotonated sulfoterephthalate L3- and exhibited good thermal and water stability. Different amounts of Pb-MOF particles were doped into Nafion to fabricate Pb-MOF/Nafion-x composite membranes, which were characterized using SEM, PXRD, IR spectroscopy, TGA, and other methods. It was found that doping Pb-MOF can apparently improve the water absorbability and thermal stability of the composite membrane. The σH+ of the Pb-MOF/Nafion-7 composite membrane was the highest and 2.14 times that of the pure Nafion membrane at 353 K. The higher proton conduction properties may be explained by the strong polarization force, and Pb(II) cations on the surface of Pb-MOF can decrease the bond energy of the O-H bond of absorbed water molecules and increase the acidity of the composite membrane. The phenomena in this study and our previous study confirm that acidity is the most important factor in favor of proton conductivity.

5.
Inorg Chem ; 62(34): 13832-13846, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37591631

ABSTRACT

The discharge of harmful and toxic pollutants in water is destroying the ecosystem balance and human being health at an alarming rate. Therefore, the detection and removal of water pollutants by using stable and efficient materials are significant but challenging. Herein, three novel lanthanide metal-organic frameworks (Ln-MOFs), [La(L)(DMF)2(H2O)2]·H2O (LCUH-104), [Nd(L)(DMF)2(H2O)2]·H2O (LCUH-105), and [Pr(L)(DMF)2(H2O)2]·H2O (LCUH-106) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid (H3TZI)] were solvothermally constructed and structurally characterized. In the three Ln-MOFs, dinuclear metallic clusters {Ln2} were connected by deprotonated tetrazol-containing dicarboxylate TZI3- to obtain a 2D layered framework with a point symbol of {42·84}·{46}. Their excellent chemical and thermal stabilities were beneficial to carry out fluorescence sensing and achieve the catalytic nitrophenols (NPs) reduction. Especially, the incorporation of the nitrogen-rich tetrazole ring into their 2D layered frameworks enables the fabrication of Pd nanocatalysts (Pd NPs@LCUH-104/105/106) and have dramatically enhanced catalytic activity by using the unique metal-support interactions between three Ln-MOFs and the encapsulating palladium nanoparticles (Pd NPs). Specifically, the reduction of NPs (2-NP, 3-NP, and 4-NP) in aqueous solution by Pd NPs@LCUH-104 exhibits exceptional conversion efficiency, remarkable rate constants (k), and outstanding cycling stability. The catalytic rate of Pd NPs@LCUH-104 for 4-NP is nearly 8.5 times more than that of Pd/C (wt 5%) and its turnover frequency value is 0.051 s-1, which indicate its excellent catalytic activity. Meanwhile, LCUH-105, as a multifunctional fluorescence sensor, exhibited excellent fluorescence detection of norfloxacin (NFX) (turn on) and Cr2O72- (turn off) with high selectivity and sensitivity at a low concentration, and the corresponding fluorescence enhancement/quenching mechanism has also been systematically investigated through various detection means and theoretical calculations.

6.
Inorg Chem ; 62(28): 11168-11178, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37415083

ABSTRACT

A new Eu-centered metal-organic framework, [(CH3)2NH2][Eu(cdip)(H2O)] (compound 1), was fabricated by the reaction of Eu(NO3)3·6H2O and a high-symmetry ligand, 5,5'-carbonyldiisophthalic acid (H4cdip). Interestingly, compound 1 exhibits extraordinary stability, including air, thermal, and chemical stabilities, in an aqueous solution with a broad pH range of 1-14, which is rarely seen in the field of metal-organic framework materials. Notably, compound 1 is proved to be an exceptional prospective luminescent sensor for recognizing 1-hydroxypyrene and uric acid both in DMF/H2O solution and human urine with a fast response (1-HP: 10 s; UA: 80 s), high quenching efficiency Ksv (7.01 × 104 M-1 for 1-HP and 5.46 × 104 M-1 for UA in DMF/H2O solution; 2.10 × 104 M-1 for 1-HP and 3.43 × 104 M-1 for UA in human urine), low limit of detection (1.61 µM for 1-HP and 0.54 µM for UA in DMF/H2O solution; 0.71 µM for 1-HP and 0.58 µM for UA in human urine), and remarkable anti-interference ability based on luminescence-quenching effects observable by the naked eye. This work provides a new strategy for the exploration of potential luminescent sensors based on Ln-MOFs for 1-HP, UA, or other biomarkers in biomedical and biological fields.


Subject(s)
Europium , Metal-Organic Frameworks , Humans , Europium/chemistry , Uric Acid/urine , Metal-Organic Frameworks/chemistry , Prospective Studies
7.
RSC Adv ; 13(22): 15031-15040, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37200703

ABSTRACT

The inexpensive and highly efficient electrocatalysts toward oxygen evolution reaction (OER) in water splitting electrolysis have displayed promising practical applications to relieve energy crisis. Herein, we prepared a high-yield and structurally regulated bimetallic cobalt-iron phosphide electrocatalyst by a facile one-pot hydrothermal reaction and subsequent low-temperature phosphating treatment. The tailoring of nanoscale morphology was achieved by varying the input ratio and phosphating temperature. Thus, an optimized FeP/CoP-1-350 sample with the ultra-thin nanosheets assembled into a nanoflower-like structure was obtained. FeP/CoP-1-350 heterostructure displayed remarkable activity toward the OER with a low overpotential of 276 mV at a current density of 10 mA cm-2, and a low Tafel slope of only 37.71 mV dec-1. Long-lasting durability and stability were maintained with the current with almost no obvious fluctuation. The enhanced OER activity was attributed to the presence of copious active sites from the ultra-thin nanosheets, the interface between CoP and FeP components, and the synergistic effect of Fe-Co elements in the FeP/CoP heterostructure. This study provides a feasible strategy to fabricate highly efficient and cost-effective bimetallic phosphide electrocatalysts.

8.
Dalton Trans ; 52(12): 3896-3906, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36877532

ABSTRACT

A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(µ3-O)2(µ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.

9.
Inorg Chem ; 62(14): 5757-5771, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36966509

ABSTRACT

The rational design and preparation of stable and multifunctional metal-organic frameworks (MOFs) with excellent catalysis and adsorption properties are desirable but are great challenges. The nitrophenol (NP) reduction to aminophenols (APs) by using the catalyst Pd@MOFs is an effective strategy, which has attracted extensive attention in recent years. Here, we report four stable isostructural two-dimensional (2D) rare earth metal-organic frameworks [RE4(AAPA)6(DMA)2 (H2O)4][DMA]3[H2O]8 (namely LCUH-101, RE = Eu, Gd, Tb, Y; AAPA2- = 5-[(anthracen-9-yl-methyl)-amino]-1,3-isophthalate), which feature a 2D layer structure with sql topology of point symbol {44·62} and exhibit excellent chemical stability and thermostability. The as-synthesized Pd@LCUH-101 was utilized for the catalytic reduction of 2/3/4-nitrophenol, which indicates high catalytic activity and recyclability attributed to the synergistic effect between Pd nanoparticles and the 2D layered structure. Of note, the turnover frequency (TOF), the reaction rate constant (k), and the activation energy (Ea) of Pd@LCUH-101 (Eu) in the reduction of 4-NP, respectively, are 1.09 s-1, 2.17 min-1, and 50.2 kJ·mol-1, which show that it has superior catalytic activity. Remarkably, LCUH-101 (Eu, Gd, Tb, and Y) are multifunctional MOFs that can effectively absorb and separate mixed dyes. The appropriate interlayer spacing enables them to efficiently adsorb methylene blue (MB) and rhodamine B (RhB) in aqueous solution, with adsorption capacities of 0.97 and 0.41 g·g-1, respectively, which is one of the highest values among those of the reported MOF-based adsorbers. Meanwhile, LCUH-101 (Eu) can be used for the separation of the dye mixture MB/MO and RhB/MO, and the excellent reusability enables LCUH-101 (Eu) to be used as chromatographic column filters to quickly separate and recover dyes. Therefore, this work provides a new strategy for the exploitation of stable and efficient catalysts for NP reduction and adsorbents for dyes.

10.
Inorg Chem ; 62(8): 3573-3584, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36786546

ABSTRACT

It is necessary to find more simple methods to improve the detection selectivity and sensitivity of antibiotics. Herein, we constructed a novel three-dimensional (3D) Cd-MOF LCU-117 assembled from p-terphenyl-4,2″,5″,4'-tetracarboxylic acid, which showed a special 3D helical structure with carboxylic acid ligands and nitrogen-containing ligands crossing each other vertically. Luminescence measurements indicated that LCU-117 has high selectivity and sensitivity toward Eu3+ through the ratiometric effect. Meanwhile, this complex itself could detect antibiotics oxytetracycline (OTC) through the turn-off mechanism. When Eu3+ was added in suspensions of LCU-117 (noted as Eu3+@LCU-117), the detection toward OTC was enhanced significantly and visually. The sensing mechanism was investigated in detail by various measurements and theoretical calculations. LCU-117 has a good effect on the logic gate, potential fingerprint detection, and mixed-matrix membranes (MMMs). The practical application for monitoring OTC in water samples also provided a satisfactory result.


Subject(s)
Heterocyclic Compounds , Metal-Organic Frameworks , Oxytetracycline , Metal-Organic Frameworks/chemistry , Cadmium , Suspensions , Ligands , Anti-Bacterial Agents/chemistry
11.
ACS Appl Mater Interfaces ; 15(2): 2940-2950, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598797

ABSTRACT

The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.

12.
Angew Chem Int Ed Engl ; 62(11): e202216950, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36625196

ABSTRACT

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

13.
Inorg Chem ; 62(5): 2083-2094, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36700880

ABSTRACT

Two supramolecular Co-MOF isomers, namely, {[Co(L)0.5(m-bimb)]·3H2O}n (LCU-115) and {[Co(L)0.5(p-bimb)]·3H2O}n (LCU-116), were synthesized from an amide-containing carboxylic acid N,N″-(3,5-dicarboxylphenyl)benzene-1,4-dicarboxamide (H4L) and two flexible positional isostructural N-containing ligands m-bimb and p-bimb (m-bimb = 1,3-bis((1H-imidazol-1-yl)methyl)benzene; p-bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene). The carboxylate ligands connect Co(II) centers to form 2D metal-carboxylate sheets, which are extended further by m-bimb and p-bimb to form a 2D bilayer with parallel stacking (LCU-115) and a 3D framework (LCU-116), respectively. Luminescence measurements indicated that these two complexes exhibited interesting multiresponsive sensing activities toward pH, biomarker N-acetylneuraminic acid, and trivalent cations Ga3+/In3+. They show highly sensitive turn-on fluorescence responses in the acidic range and can also be regarded as on-off-on vapoluminescent sensors to typical acidic and basic gases HCl and Et3N. It is worth noting that these complexes have excellent turn-on ratiometric fluorescence sensing ability for N-acetylneuraminic acid (NANA) with detection limits as low as 7.39 and 8.06 µM, respectively. Furthermore, they were successfully applied for the detection of NANA in simulated urine and serum samples with satisfactory results. For ion detection, LCU-116 could detect both Ga3+ and In3+, while LCU-115 could distinguish Ga3+ from In3+ with the latter showing luminescence quenching. The sensing mechanism was investigated in detail by XRD, UV-vis, EDS, XPS, SEM, and TEM. The results of interday and intraday precision studies gave low RSD values in the range of 1.19-3.53%, ascertaining the reproducibility of these sensors. The recoveries for the sensing analytes in simulated urine/serum or real water are satisfactory from 96.7 to 103.3% (toward NANA) and 96.6 to 115.0% (toward Ga3+ and In3+), indicating that these two complexes also possess acceptable reliability for monitoring in real samples. The results indicated that the supramolecular isomers LCU-115 and LCU-116 are promising material candidates for application in biological and environmental monitoring.


Subject(s)
Luminescence , Metal-Organic Frameworks , N-Acetylneuraminic Acid , Reproducibility of Results , Ligands , Benzene , Models, Molecular , Crystallography, X-Ray , Metals/chemistry , Carboxylic Acids/chemistry
14.
Inorg Chem ; 61(40): 15880-15894, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36154014

ABSTRACT

Three novel porous transition-metal-organic frameworks (TM-OFs), formulated as [Co3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (1), [Cd3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (2), and [CdK(DCPN)(DMA)] (3), have been successfully prepared via solvothermal conditions based on a 5-(3',6'-dicarboxylic phenyl) nicotinic carboxylic acid (H3DCPN) ligand. 1 and 2 both have the same porous 3D network structure with the point symbol of {410·614·84}·{45·6}2 based on trinuclear ({Co3} or {Cd3}) clusters, indicating a one-dimensional porous channel, and possess excellent water and thermal stability; 3 also displays a porous 3D network structure with a 4-connected sra topology based on the heteronuclear metal cluster {CdK}. Complex 1 can be used to load Pd nanoparticles (Pd NPs) via a wetness impregnation strategy to obtain Pd@1. The reduction of nitrophenols (2-NP, 3-NP, 4-NP) by Pd@1 in aqueous solution shows outstanding conversion, excellent rate constants (k), and remarkable cycling stability due to the synergistic effect of complex 1 and Pd NPs. Luminescence sensing tests confirmed that 2 is a reliable multifunctional chemical sensor with high selectivity and sensitivity for low concentrations of Fe3+, Cr2O72-, CPFX, and NFX. Specifically, 2 shows a fluorescence enhancement behavior toward fluoroquinolone antibiotics (CPFX and NFX), which has not been reported previously in the literature. Moreover, the rational mechanism of fluorescence sensing was also systematically investigated by various detection means and theoretical calculations.


Subject(s)
Metal-Organic Frameworks , Anti-Bacterial Agents , Cadmium , Carboxylic Acids , Catalysis , Fluoroquinolones , Ligands , Luminescence , Metal-Organic Frameworks/chemistry , Nitrophenols , Water
15.
Inorg Chem ; 61(40): 16185-16196, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36173130

ABSTRACT

A rigid carboxylate ligand with a nitro functional group was selected to coordinate with Tb(III) cation, and Tb-MOF ({[Tb4(L)4(OH)4(H2O)3]·8H2O}n, H2L = 2-nitroterephthalic acid) with large porous and excellent hydrophilicity was obtained successfully. The obtained Tb-MOF was filled into the Nafion matrix to improve its proton conduction performance. The Tb-MOF/Nafion composite membrane was characterized by PXRD, IR, and thermogravimetry (TG) and for water uptake, area swelling, and proton conductivity. The activity energy, Ea, value of the composite membrane, which is a very important factor affecting the proton conduction performance of the membrane, was fitted and calculated. It was revealed that Tb-MOF can improve the proton conductivities of composite membranes, and the improvement degree and Ea value were both affected by Tb-MOF content. When Tb-MOF content was 5%, the proton conductivity of the composite membrane was 1.53 × 10-2 S·cm-1 at 100% RH and 80 °C, which is 1.81 times that of the pure Nafion membrane. A MOF containing a nitro functional group was first doped into Nafion in this study and exhibited excellent performance for improving composite membrane proton conductivity. This study will provide a valuable reference for designing different functionalized MOFs to promote the proton conductivities of proton exchange membranes.

16.
Dalton Trans ; 51(20): 7817-7827, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35532008

ABSTRACT

High-performance lithium ion batteries (LIBs) juggling high reversible capacity, excellent rate capability and ultralong cycle stability are urgently needed for all electronic devices. Here we report employing a vesicle-like porous N-doped carbon material (abbr. N/C-900) as a highly active anode for LIBs to balance high capacity, high rate and long life. The N/C-900 material was fabricated by pyrolysis of a designed crystal MOF LCU-104, which exhibits a graceful two-fold interpenetrating structural feature of N-rich nanocages {Zn6(dttz)4} linked through an N-donor ligand bpp (H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole, bpp = 1,3-bis(4-pyridyl)propane). The features of LCU-104 combine high N content (35.1%), interpenetration, and explosive characteristics, which endow the derived N/C material with optimized N-doping for tuning its chemical and electronic structure, a suitably thicker wall to enhance its stability, and a vesicle-like structure to improve its porosity. As an anode material for LIBs, N/C-900 delivers a highly reversible capacity of ca. 734 mA h g-1 at a large current density of 1 A g-1 until the 2000th cycle, revealing its ultralong cycle stability and excellent rate capability. The unique structure and preferential interaction between abundant pyridinic N active sites and Li atoms are responsible for the improved excellent lithium storage capacity and durability performances of the anode according to analysis of the results of computational modeling.

17.
Sensors (Basel) ; 22(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35632267

ABSTRACT

The reasonable allocation and control of CO2 concentration in a greenhouse are very important for the optimal growth of crops. In this study, based on density functional theory (DFT), an MoS2-GeSe monolayer was proposed to unravel the issues of the lower selectivity, poorer sensitivity and non-recyclability of traditional nanomaterial gas sensors. The incorporation of MoS2 units greatly enhanced the sensitivity of the pure GeSe monolayer to CO2 and the high binding energy also demonstrated the thermal stability of the doped structures. The ideal adsorption energy, charge transfer and recovery time ensured that the MoS2-GeSe monolayer had a good adsorption and desorption ability. This paper aimed to solve the matter of recycling sensors within agriculture. This research could provide the theoretical basis for the establishment of a potentially new generation of gas sensors for the monitoring of crop growth.


Subject(s)
Gases , Molybdenum , Adsorption , Agriculture , Carbon Dioxide , Density Functional Theory
18.
Inorg Chem ; 61(19): 7238-7250, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35504023

ABSTRACT

Two Zn-MOFs, namely, {[Zn(L)0.5(bpea)]·0.5H2O·0.5DMF}n [LCU-113 (for Liaocheng University)] and {[Zn(L)0.5(ibpt)]·H2O·DMF}n (LCU-114), were synthesized based on flexible tetracarboxylic acid 1,3-bis(3,5-dicarboxyphenoxy)benzene (H4L) and different N-ligands [bpea = 1,2-dipyridyl ethane; ibpt = 3-(4'-imidazolobenzene)-5-(pyridine-4'-yl)-1,2,4-triazole]. LCU-113 and LCU-114 possess twofold interpenetrating three-dimensional pillared layer structures, in which a two-dimensional layer formed by carboxylic acid and Zn2+ ions was pillared by bpea and ibpt, respectively. The two complexes show high water stability and high luminescence sensing performance toward organic solvents, ions, and antibiotics, as well as chemicals, in simulated urine. The investigation showed that (1) LCU-113 and LCU-114 could detect uric acid (UA, 2,6,8-trihydroxypurine, metabolite of purine) and p-aminophenol (PAP, biomarker of phenamine) in simulated urine by luminescence quenching, respectively, and (2) luminescence quenching of LCU-113 and LCU-114 occurred in aqueous solutions of nitrofurazone (NZF), Fe3+, and CrO42-/Cr2O72-. All the above detections have excellent anti-interference ability and recyclability. The luminescence mechanism analysis indicates that weak interactions between the framework structures and the target analytes as well as the energy competition (inner filter effect) play an important role in sensing the above analytes. The practical application for monitoring NZF/Fe3+ in water samples was also tested.


Subject(s)
Anti-Bacterial Agents , Luminescence , Anions , Anti-Bacterial Agents/analysis , Cations , Humans , Water/chemistry , Zinc/chemistry
19.
Ann Palliat Med ; 11(2): 466-479, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775770

ABSTRACT

BACKGROUND: This study aims to explore whether Fufang Shatai Heji (STHJ), as a mixture collected by a decoction of a variety of Chinese herbal medicines for immune system diseases, can improve the cartilage destruction of rheumatoid arthritis (RA). METHODS: The therapeutic effects of STHJ were studied using collagen induced arthritis (CIA) mice. The improvement effect of STHJ on synovitis and cartilage damage caused by arthritis was studied by joint pathological analysis. The inhibitory effect of STHJ on related degradation enzymes in cartilage was studied by immunohistochemistry and real-time polymerase chain reaction (PCR). The specific targets of STHJ were predicted by molecular docking. RESULTS: After successfully inducing CIA, the paws of the mice showed significant swelling, and athological analysis of the ankle and knee joints also showed significant cartilage destruction and synovial hyperplasia. However, synovial hyperplasia and cartilage destruction were markedly alleviated after administration of STHJ. And after STHJ treatment, the expression of ADAMTS-4, ADAMTS-5, MMP-9 and MMP-13, in the cartilage layer of CIA mice was significantly inhibited. Through molecular docking assays, we proved that acteoside in STHJ could directly bind to the Glu111, Phe110 residues in MMP-9 and glycyrrhizic acid in STHJ bind to the Glu382, Asn433 residues in MMP-13. CONCLUSIONS: Our results suggested that STHJ may alleviate synovial hyperplasia and cartilage destruction in CIA mice and protect cartilage by inhibiting the expression of MMP-9 and other enzymes.


Subject(s)
Arthritis, Experimental , Drugs, Chinese Herbal , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cartilage/metabolism , Cartilage/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/pharmacology , Matrix Metalloproteinases/therapeutic use , Mice , Molecular Docking Simulation
20.
Inorg Chem ; 60(24): 19189-19196, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34865486

ABSTRACT

A novel europium-centered metal-organic framework fabricated from a symmetric and rigid ligand with tetracarboxylate groups, 2,6-di(2',5'-dicarboxylphenyl)pyridine (H4ddpp), has been synthesized solvothermally. Characterized by single-crystal X-ray diffraction, compound 1 features a 3D microporous structure with a butterfly-shaped trinuclear Eu3(COO)6 secondary building unit. Interestingly, three kinds of 1D open channels viewed in different directions in compound 1 are discovered, and the void ratio is calculated to be 47.5% by PLATON software. Solid-state luminescent experiments at 298 K reveal that compound 1 displays naked-eye characteristic red emission of Eu3+ ions monitoring the typical 5D0 → 7F2 transition. The exploration of luminescent sensing tests discloses that compound 1 has an outstanding capacity for recognizing urinary 1-hydroxypyrene (1-HP) with a quite fast response and high sensitivity, giving the quenching efficiency of 98.2% after the immersion time for just 1 min and 73.2% with the amount of 1-HP only 0.05 mg/mL. To our knowledge, it is the first reported Eu-MOF as an extremely fast-responsive and highly sensitive luminescent sensor for 1-HP which is interference-free from other urinary components. Furthermore, the successful preparation of the luminescent test papers makes compound 1 convenient, easy, and real-time in the application for sensing 1-HP in biomedical and biological fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...