Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Chemistry ; : e202400796, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713008

ABSTRACT

Porous aromatic frameworks (PAFs) are promising functional porous solids known for their feasible amenability and extraordinary stability. When the framework modified by ionic functional groups, the given ionic PAFs (iPAFs) exhibited charged channels for adsorption, separation and catalysis. However, the surface areas of ionic porous frameworks are usually lower than the neutral ones, and their synthesis limited by specific strategies and complex modifying processes. To overcome these problems, we proposed an intuitive route to construct ionic porous framework with high specific surface area, through a multivariable synthesis strategy. Herein, multivariate ionic porous aromatic framework (MTV-iPAFs) material named PAF-270 was synthesized from readily available building units with ionic functional groups. PAF-270 exhibited hierarchical structure with the highest specific surface area among reported imidazolium functionalized PAFs. Leveraging its physical and chemical properties, we explored its availability for polyoxometalates loading and heterogeneous catalysis. PAF-270 exhibited high adsorption capacity up to 50% for both H3O40PW12 (HPW) and (NH4)5H6PV8Mo4O40 (V8). HPW@PAF-270 and V8@PAF-270 exhibited excellent catalytic abilities for oleic acid esterification and extractive oxidative desulfurization, respectively. Due to the stability of PAFs, these materials also showed remarkable resistance to temperature and pH changes. These results highlight the potential application of MTV-iPAFs as functional porous materials.

2.
Dev Cell ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38821057

ABSTRACT

The interactions of environmental compartments with epithelial cells are essential for mammary gland development and homeostasis. Currently, the direct crosstalk between the endothelial niche and mammary epithelial cells remains poorly understood. Here, we show that faciogenital dysplasia 5 (FGD5) is enriched in mammary basal cells (BCs) and mediates critical interactions between basal and endothelial cells (ECs) in the mammary gland. Conditional deletion of Fgd5 reduced, whereas conditional knockin of Fgd5 increased, the engraftment and expansion of BCs, regulating ductal morphogenesis in the mammary gland. Mechanistically, murine mammary BC-expressed FGD5 inhibited the transcriptional activity of activating transcription factor 3 (ATF3), leading to subsequent transcriptional activation and secretion of CXCL14. Furthermore, activation of CXCL14/CXCR4/ERK signaling in primary murine mammary stromal ECs enhanced the expression of HIF-1α-regulated hedgehog ligands, which initiated a positive feedback loop to promote the function of BCs. Collectively, these findings identify functionally important interactions between BCs and the endothelial niche that occur through the FGD5/CXCL14/hedgehog axis.

3.
Cancer Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718305

ABSTRACT

Peripheral T cell lymphoma (PTCL) is a heterogeneous and aggressive disease with a poor prognosis. Histone deacetylase (HDAC) inhibitors have shown inhibitory effects on PTCL. A better understanding of the therapeutic mechanism underlying the effects of HDAC inhibitors could help improve treatment strategies. Here, we found that high expression of HDAC3 is associated with poor prognosis in PTCL. HDAC3 inhibition suppressed lymphoma growth in immunocompetent mice but not in immunodeficient mice. HDAC3 deletion delayed the progression of lymphoma, reduced the lymphoma burden in the thymus, spleen, and lymph nodes, and prolonged the survival of mice bearing MNU-induced lymphoma. Furthermore, inhibiting HDAC3 promoted the infiltration and enhanced the function of natural killer (NK) cells. Mechanistically, HDAC3 mediated ATF3 deacetylation, enhancing its transcriptional inhibitory activity. Targeting HDAC3 enhanced CXCL12 secretion through an ATF3-dependent pathway to stimulate NK cell recruitment and activation. Finally, HDAC3 suppression improved the response of PTCL to conventional chemotherapy. Collectively, this study provides insights into the mechanism by which HDAC3 regulates ATF3 activity and CXCL12 secretion, leading to immune infiltration and lymphoma suppression. Combining HDAC3 inhibitors with chemotherapy may be a promising strategy for treating PTCL. Key words: Histone deacetylases (HDACs), Natural killer (NK) cells, Peripheral T cell lymphoma (PTCL).

4.
Biochem Genet ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734758

ABSTRACT

BACKGROUND AND PURPOSE: Endoplasmic reticulum stress (ERS) has been reported to be closely associated with the development of osteoarthritis (OA), but the underlying mechanisms are not fully delineated. The present study was designed to investigate the involvement of ERS-related genes in regulating OA progression. METHODS: The expression profiles of OA patients and normal people were downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) in datasets GSE55457 and GSE55235 were screened and identified by R software with the construction of the protein-protein interaction (PPI) networks. Through the STRING and Venn diagram analysis, hub ERS-related genes were obtained. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed. Biomarkers with high diagnostic values of osteoarthritis (OA) were studied. The hematoxylin and eosin (H&E) staining and micro-CT were applied to evaluate the establishment of the OA model. The expression levels of biomarkers were validated with the use of reverse transcription­quantitative polymerase chain reaction (RT-qPCR) and western blot. Finally, we evaluated the correlations of hub ERS-related genes with the immune infiltration cells via the CIBERSORT algorithm. RESULTS: A total of 60 downregulated and 52 upregulated DEGs were identified, and the following GO and KEGG pathway analyses verified that those DEGs were mainly enriched in biological process (BP), cellular component (CC), molecular function (MF), and inflammation-associated signal pathways. Interestingly, among all the DEGs, six ER stress-associated genes, including activating transcription factor 3 (ATF3), DEAD-Box Helicase 3 X-Linked (DDX3X), AP-1 transcription factor subunit (JUN), eukaryotic initiation factor 4 (EIF4A1), KDEL endoplasmic reticulum protein retention receptor 3 (KDELR3), and vascular endothelial growth factor A (VEGFA), were found to be closely associated with OA progression, and the following RT-qPCR and Western Blot analysis confirmed that DDX3X, JUN, and VEGFA were upregulated, whereas KDELR3, EIF4A1, and ATF3 were downregulated in OA rats tissues compared to the normal tissues, which were in accordance with our bioinformatics findings. Furthermore, our receiver operating characteristic (ROC) curve analysis verified that the above six ER stress-associated genes could be used as ideal biomarkers for OA diagnosis and those genes also potentially regulated immune responses by influencing the biological functions of mast cells and macrophages. CONCLUSION: Collectively, the present study firstly identified six ER stress-associated genes (ATF3, DDX3X, JUN, EIF4A1, KDELR3, and VEGFA) that may play critical role in regulating the progression of OA.

5.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172124

ABSTRACT

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Fusion Proteins, bcr-abl/genetics , Interleukin-17/genetics , Drug Resistance, Neoplasm/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Acute Disease
6.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38128537

ABSTRACT

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Subject(s)
DNA-Binding Proteins , MRE11 Homologue Protein , Recombinational DNA Repair , Humans , DNA , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Homologous Recombination , MRE11 Homologue Protein/metabolism , Lactic Acid/metabolism
7.
Front Med (Lausanne) ; 10: 1284120, 2023.
Article in English | MEDLINE | ID: mdl-38020179

ABSTRACT

Background: Liver metastasis is one of the primary causes of death for the patients with pancreatic neuroendocrine tumors (PNETs). However, no curative therapy has been developed so far. Methods: The anti-tumor efficacy of a genetically engineered tumor-targeting Salmonella typhimurium YB1 was evaluated on a non-functional INR1G9 liver metastasis model. Differential inflammatory factors were screened by Cytometric Bead Array. Antibody depletion assay and liver-targeted AAV2/8 expression vector were used for functional evaluation of the differential inflammatory factors. Results: We demonstrated that YB1 showed significant anti-tumor efficacy as a monotherapy. Since YB1 cannot infect INR1G9 cells, its anti-tumor effect was possibly due to the modulation of the tumor immune microenvironment. Two inflammatory factors IFNγ and CCL2 were elevated in the liver after YB1 administration, but only IFNγ was found to be responsible for the anti-tumor effect. Liver-targeted expression of IFNγ caused the activation of macrophages and NK cells, and reproduced the therapeutic effect of YB1 on liver metastasis. Conclusion: We demonstrated that YB1 may exhibit anti-tumor effect mainly based on IFNγ induction. Targeted IFNγ therapy can replace YB1 for treating liver metastasis of PNETs.

8.
Cancer Imaging ; 23(1): 108, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924154

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA) PET/CT is a highly regarded radionuclide imaging modality for prostate cancer (PCa). This study aimed to evaluate the diagnostic performance of 18F-PSMA-1007 PET/CT in detecting intraprostatic lesions of PCa using radical prostatectomy (RP) specimens as a reference standard and to establish an optimal maximum standardized uptake value (SUVmax) cutoff for distinguishing between PCa and non-PCa lesions. METHODS: We retrospectively collected 117 patients who underwent 18F-PSMA-1007 PET/CT before RP. The uptake of the index tumor and contralateral non-PCa lesion was assessed. Histopathology of RP specimens was used as the gold standard. Kappa test was used to evaluate the consistency of preoperative PSMA PET/CT staging and postoperative pathological staging. Finally, an SUVmax cutoff value was identified by receiver operating characteristic (ROC) curve analysis to distinguish PCa lesions from non-PCa lesions. A prospective cohort including 76 patients was used to validate the results. RESULTS: The detection rate of 18F-PSMA-1007 PET/CT for prostate cancer was 96.6% (113/117). 18F-PSMA-1007 had a sensitivity of 91.2% and a positive predictive value (PPV) of 89.8% for the identification of intraprostatic lesions. The consistency test (Kappa = 0.305) indicated poor agreement between the pathologic T-stage and PSMA PET/CT T-stage. Based on ROC curve analysis, the appropriate SUVmax to diagnose PCa lesions was 8.3 (sensitivity of 71.3% and specificity 96.8%) with an area under the curve (AUC) of 0.93 (P < 0.001). This SUVmax cutoff discriminated PCa lesions from non-PCa lesions with a sensitivity of 74.4%, a specificity of 95.8% in the prospective validation group. CONCLUSIONS: 18F-PSMA-1007 PET/CT demonstrated excellent performance in detecting PCa. An optimal SUVmax threshold (8.3) could be utilized to identify lesions of PCa by 18F-PSMA-1007 PET/CT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04521894, Registered: August 17, 2020.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Oligopeptides , Gallium Radioisotopes
9.
EMBO J ; 42(22): e114334, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37781931

ABSTRACT

Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.


Subject(s)
DNA , G-Quadruplexes , Humans , Genome, Human , Nucleotidyltransferases , DNA Replication
10.
Eur J Med Chem ; 261: 115856, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37826934

ABSTRACT

The immunoproteasome has emerged as a potential therapeutic target for idiopathic pulmonary fibrosis (IPF). We report herein our efforts to discover novel non-peptidic immunoproteasome inhibitors as potential treatment for IPF. A structure-based virtual screening was initially performed and the hit compound VS-7 with an IC50 of 9.437 µM against ß5i was identified. Hit evolution based on the interaction mode of VS-7 proceeded, and a potent ß5i inhibitor 54 (IC50 = 8.463 nM) with favorable subunit-selective profiles was obtained. Compound 54 also imposed significant effects on the release of TNF-α and IL-6, the transcriptional activity of NF-κB, as well as TGF-ß1 induced fibroblast proliferation, activation and collagen synthesis. Notably, when administered at 30 mg/kg in a bleomycin-induced IPF mouse model, compound 54 showed anti-fibrotic effects comparable to the clinical drug nintedanib. The results suggest that selective inhibition of immunoproteasome could be an effective approach to treat IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mice , Animals , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Bleomycin/pharmacology , Fibrosis , NF-kappa B , Lung/pathology
11.
Nat Commun ; 14(1): 5917, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739936

ABSTRACT

CSCs (Cancer stem cells) with distinct metabolic features are considered to cause HCC (hepatocellular carcinoma) initiation, metastasis and therapeutic resistance. Here, we perform a metabolic gene CRISPR/Cas9 knockout library screen in tumorspheres derived from HCC cells and find that deletion of SCARB2 suppresses the cancer stem cell-like properties of HCC cells. Knockout of Scarb2 in hepatocytes attenuates HCC initiation and progression in both MYC-driven and DEN (diethylnitrosamine)-induced HCC mouse models. Mechanistically, binding of SCARB2 with MYC promotes MYC acetylation by interfering with HDCA3-mediated MYC deacetylation on lysine 148 and subsequently enhances MYC transcriptional activity. Screening of a database of FDA (Food and Drug Administration)-approved drugs shows Polymyxin B displays high binding affinity for SCARB2 protein, disrupts the SCARB2-MYC interaction, decreases MYC activity, and reduces the tumor burden. Our study identifies SCARB2 as a functional driver of HCC and suggests Polymyxin B-based treatment as a targeted therapeutic option for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Neoplastic Stem Cells , Polymyxin B , Humans
12.
Food Chem Toxicol ; 181: 114065, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769895

ABSTRACT

Artemether-lumefantrine is an artemisinin-based combination therapy for the treatment of malaria, which are primarily metabolized by cytochrome P450 3A4. Therapeutic difference caused by gene polymorphisms of CYP3A4 may lead to uncertain adverse side effects or treatment failure. The aim of this study was to evaluate the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolism in vitro. Enzyme kinetics assay was performed using recombinant human CYP3A4 cell microsomes. The analytes, dihydroartimisinin and desbutyl-lumefantrine, were detected by ultra-performance liquid chromatography tandem mass spectrometry. The results demonstrated that compared to CYP3A4.1, the intrinsic clearance of CYP3A4.4, 5, 9, 16, 18, 23, 24, 28, 31-34 significantly reduced for artemether (58.5%-93.3%), and CYP3A4.17 almost loss catalytic activity. Simultaneously, CYP3A4.5, 14, 17, 24 for lumefantrine were decreased by 56.1%-99.6%, and CYP3A4.11, 15, 18, 19, 23, 28, 29, 31-34 for lumefantrine was increased by 51.7%-296%. The variation in clearance rate indicated by molecular docking could be attributed to the disparity in the binding affinity of artemether and lumefantrine with CYP3A4. The data presented here have enriched our understanding of the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolizing. These findings serve as a valuable reference and provide insights for guiding the treatment strategy involving artemether-lumefantrine.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/adverse effects , Artemether/therapeutic use , Cytochrome P-450 CYP3A/genetics , Molecular Docking Simulation , Artemether, Lumefantrine Drug Combination/therapeutic use , Lumefantrine/therapeutic use , Fluorenes/adverse effects , Malaria, Falciparum/chemically induced , Malaria, Falciparum/drug therapy
13.
J Mol Histol ; 54(5): 427-438, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659992

ABSTRACT

Osteoarthritis (OA) is a systemic joint degenerative disease involving a variety of cytokines and growth factors. In this study, we investigated the protective effect of fibroblast growth factor 1 (FGF1) knockdown on OA and its underlying mechanisms in vitro. In addition, we evaluated the effect of FGF1 knockout on the destabilization of the medial meniscus (DMM) and examined the anterior and posterior cruciate ligament model in vivo. FGF1 affects OA cartilage destruction by increasing the protein expression of Nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which is associated with the phosphorylation of AMPK and its substrates. Our study showed that FGF1 knockdown could reverse the oxidative damage associated with osteoarthritis. Nrf2 knockdown eliminated the antioxidant effect of FGF1 knockdown on chondrocytes. Furthermore, AMPK knockdown could stop the impact of FGF1 knockdown on osteoarthritis. These findings suggested that FGF1 knockdown could effectively prevent and reverse osteoarthritis by activating AMPK and Nrf2 in articular chondrocytes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Osteoarthritis/metabolism , Chondrocytes/metabolism , Cartilage/metabolism , Cartilage, Articular/metabolism
14.
Adv Healthc Mater ; 12(29): e2302059, 2023 11.
Article in English | MEDLINE | ID: mdl-37610041

ABSTRACT

Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.


Subject(s)
Hydrogels , Rhinitis, Allergic , Humans , Hydrogels/therapeutic use , Adhesives , Epistaxis , Tissue Adhesions
15.
Nano Lett ; 23(15): 7054-7061, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37487050

ABSTRACT

Nanopores have developed into powerful single-molecule sensors capable of identifying and characterizing small polymers, such as DNA, by electrophoretically driving them through a nanoscale pore and monitoring temporary blockades in the ionic pore current. However, the relationship between nanopore signals and the physical properties of DNA remains only partly understood. Herein, we introduce a programmable DNA carrier platform to capture carefully designed DNA nanostructures. Controlled translocation experiments through our glass nanopores allowed us to disentangle this relationship. We vary DNA topology by changing the length, strand duplications, sequence, unpaired nucleotides, and rigidity of the analyte DNA and find that the ionic current drop is mainly determined by the volume and flexibility of the DNA nanostructure in the nanopore. Finally, we use our understanding of the role of DNA topology to discriminate circular single-stranded DNA molecules from linear ones with the same number of nucleotides using the nanopore signal.


Subject(s)
Nanopores , DNA/chemistry , Nucleotides/chemistry , Nucleotides/genetics , Nanotechnology , DNA, Single-Stranded
16.
Acta Pharm Sin B ; 13(4): 1631-1647, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139431

ABSTRACT

Pulmonary fibrosis (PF) is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration (LAR). Here, we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells (AEC2s). The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells (AEC1s). We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s, which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK, two critical kinases supporting LAR, leading to LAR failure. TRIB3, a stress sensor, interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination. Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF. Our study reveals a mechanism of the TRIB3-MDM2-SLUG-SLC34A2 axis causing the LAR failure in PF, which confers a potential strategy for treating patients with fibroproliferative lung diseases.

17.
Cell Death Differ ; 30(5): 1320-1333, 2023 05.
Article in English | MEDLINE | ID: mdl-36894687

ABSTRACT

Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML-RARα, which recruits corepressor complexes, including histone deacetylases (HDACs), to suppress cell differentiation and promote APL initiation. All-trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) or chemotherapy highly improves the prognosis of APL patients. However, refractoriness to ATRA and ATO may occur, which leads to relapsed disease in a group of patients. Here, we report that HDAC3 was highly expressed in the APL subtype of AML, and the protein level of HDAC3 was positively associated with PML-RARα. Mechanistically, we found that HDAC3 deacetylated PML-RARα at lysine 394, which reduced PIAS1-mediated PML-RARα SUMOylation and subsequent RNF4-induced ubiquitylation. HDAC3 inhibition promoted PML-RARα ubiquitylation and degradation and reduced the expression of PML-RARα in both wild-type and ATRA- or ATO-resistant APL cells. Furthermore, genetic or pharmacological inhibition of HDAC3 induced differentiation, apoptosis, and decreased cellular self-renewal of APL cells, including primary leukemia cells from patients with resistant APL. Using both cell line- and patient-derived xenograft models, we demonstrated that treatment with an HDAC3 inhibitor or combination of ATRA/ATO reduced APL progression. In conclusion, our study identifies the role of HDAC3 as a positive regulator of the PML-RARα oncoprotein by deacetylating PML-RARα and suggests that targeting HDAC3 could be a promising strategy to treat relapsed/refractory APL.


Subject(s)
Antineoplastic Agents , Arsenic , Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Arsenic/metabolism , Arsenic/pharmacology , Arsenic/therapeutic use , Arsenic Trioxide/pharmacology , Arsenic Trioxide/metabolism , Arsenic Trioxide/therapeutic use , Arsenicals/metabolism , Arsenicals/pharmacology , Arsenicals/therapeutic use , Cell Differentiation , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Nuclear Proteins/metabolism , Oxides/metabolism , Oxides/pharmacology , Oxides/therapeutic use , Transcription Factors/metabolism , Tretinoin/pharmacology , Ubiquitination
18.
Free Radic Biol Med ; 196: 53-64, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36640852

ABSTRACT

Oxidative stress can attack precursor nucleotides, resulting in nucleic acid damage in cells. It remains unclear how 8-oxo-dGTP and 8-oxoGTP, oxidized forms of dGTP and GTP, respectively, could affect DNA or RNA oxidation levels and tumor development. To address this, we intravenously administered 8-oxo-dGTP and 8-oxoGTP to wild-type and MTH1-knockout mice. 8-oxoGTP administration increased frequency of tumor incidence, which is more prominent in MTH1-knockout mice. However, 8-oxo-dGTP treatment rather reduced tumor development regardless of the mouse genotype. The tumor suppressive effects of 8-oxo-dGTP were further confirmed using xenograft and C57/6J-ApcMin/Nju mouse models. Mechanistically, 8-oxo-dGTP increased the 8-oxo-dG contents in DNA and DNA strand breakage, induced cell cycle arrest in S phase and apoptosis mediated by AIF, eventually leading to reduced tumor incidence. These results suggest distinct roles of 8-oxo-dGTP and 8-oxoGTP in tumor development.


Subject(s)
Neoplasms , Phosphoric Monoester Hydrolases , Humans , Animals , Mice , Phosphoric Monoester Hydrolases/genetics , S Phase , Deoxyguanine Nucleotides/metabolism , Neoplasms/genetics , DNA/metabolism , Mice, Knockout , Apoptosis , DNA Repair Enzymes/genetics
19.
Sci Total Environ ; 858(Pt 2): 160085, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356740

ABSTRACT

Concerns about per- and polyfluoroalkyl substances (PFASs) have grown in importance in the fields of ecotoxicology and public health. This study aims to compare the potential effects of long-chain (carbon atoms ≥ 7) and short-chain derivatives and their mixtures' exposure according to PFASs-exposed (1, 2, 5, 10, and 20 mg/L) zebrafish's (Danio rerio) toxic effects and their differential gene expression. Here, PFOAC8, GenXC6, and their mixtures (v/v, 1:1) could reduce embryo hatchability and increase teratogenicity and mortality. The toxicity of PFOAC8 was higher than that of GenXC6, and the toxicity of their mixtures was irregular. Their exposure (2 mg/L) caused zebrafish ventricular edema, malformation of the spine, blood accumulation, or developmental delay. In addition, all of them had significant differences in gene expression. PFOAC8 exposure causes overall genetic changes, and the pathways of this transformation were autophagy and apoptosis. More importantly, in order to protect cells from PFOAC8, GenXC6, and their mixtures' influences, zebrafish inhibited the expression of ATPase and Ca2+ transport gene (atp1b2b), mitochondrial function-related regulatory genes (mt-co2, mt-co3, and mt-cyb), and tumor or carcinogenic cell proliferation genes (laptm4b and ctsbb). Overall, PFOAC8, GenXC6, and their mixtures' exposures will affect the gene expression effects of zebrafish embryos, indicating that PFASs may pose a potential threat to aquatic biological safety. These results showed that the relevant genes in zebrafish that were inhibited by PFASs exposure were related to tumorigenesis. Therefore, the effect of PFASs on zebrafish can be further used to study the pathogenesis of tumors.


Subject(s)
Fluorocarbons , Neoplasms , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Fluorocarbons/metabolism , Water Pollutants, Chemical/metabolism , Gene Expression , Embryo, Nonmammalian
20.
Front Oncol ; 12: 1018833, 2022.
Article in English | MEDLINE | ID: mdl-36457489

ABSTRACT

Objective: The aim of this study was to evaluate the performance of Fluoride-18 (18F)-PSMA-1007-PET/CT radiomics for the tumor malignancy and clinical risk stratification in primary prostate cancer (PCa). Materials and Methods: A total of 161 pathological proven PCa patients in a single center were retrospectively analyzed. Prostate-specific antigen (PSA), Gleason Score (GS) and PET/CT indexes (SUVmin, SUVmax, and SUVmean) were compared according to risk stratification. Radiomics features were extracted from PCa 18F-PSMA-1007-PET/CT imaging. The radiomics score integrating all selected parameters and clinicopathologic characteristics was used to construct a binary logistic regression and nomogram classifier. Predictors contained in the individualized prediction nomogram included radiomics score, PSA level and metastasis status. Results: The radiomics signature, which consisted of 30 selected features, was significantly associated with PSA level and Gleason score (P < 0.001 for both primary and validation cohorts). Predictors contained in the individualized prediction nomogram included radiomics score, PSA level and metastasis status. The model showed good discrimination with an area under the ROC curve of 0.719 for the GS. Combined clinical-radiomic score nomogram had a similar benefit to utilizing the PET/CT radiomic features alone for GS discrimination. Conclusion: The 18F-PSMA-1007-PET/CT radiomics signature can be used to facilitate preoperative individualized prediction of GS; incorporating the radiomics signature, PSA level, and metastasis status had similar benefits to those of utilizing the PET/CT radiomics features alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...