Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473556

ABSTRACT

This study analyzed the viscoelastic properties of asphalt binders reinforced with various fibers, such as modified asphalt binder, modified asphalt binder reinforced with lignin fibers (LFs), polyester fibers (PFs), and polypropylene fibers (PPFs), using dynamic shear rheological (DSR) testing. Then, the experiment generated data on the dynamic modulus and phase angle, which described the dynamic rheological characteristics at varying temperatures. The generalized Maxwell model was employed to select the appropriate element, and the test curve was fitted into a discrete time spectrum based on the time-temperature equivalence principle (TTSP). The master curves of the relaxation modulus and creep compliance were established to predict the relaxation and creep properties of various asphalt binders. The analysis indicated that fiber-reinforced binders offer superior resistance to high temperatures and long-term deformation, while being less sensitive to temperature and having a more significant elastic characterization. The binders reinforced with PPFs and LFs exhibited superior performance in high-temperature settings and long-term durability, respectively. On the other hand, the binder reinforced with PFs displayed exceptional high-temperature elastic properties. Additionally, based on the experimental data and corresponding discussion, it appears that the 13-element GM model is more appropriate for fitting the data.

2.
Article in English | MEDLINE | ID: mdl-37239491

ABSTRACT

Plastic pollution has become one of the most pressing environmental issues. It is essential to understand why an individual is or is not supportive of reducing plastics. This study aims to investigate the dynamics behind residents' plastic reduction attitudes from the lens of the Big Five personality traits. A sample of 521 residents in China was recruited and analyzed for this study. The results indicate that the Conscientiousness personality type is a reliable green personality with positive plastic reduction attitudes. Highly conscientious individuals are more responsible for the environment, and are expected to strictly follow the plastic ban policies, whereas less conscientious individuals are more likely to turn a blind eye to them. More importantly, the relationship between a Conscientiousness personality and plastic reduction attitudes is negatively moderated by education. The discovery of education's moderating role suggests that both an inborn personality trait of Conscientiousness and post-born education can complementarily shape residents' plastic reduction attitudes. The findings of this study deepen the understanding of the causes of pro-environmental attitudes and provide valuable insights into plastic management in China.


Subject(s)
Personality Disorders , Personality , Humans , China , Attitude
3.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676286

ABSTRACT

Fiber can absorb asphalt binder and therefore reinforce and stabilize the asphalt mixture structure and also prevent the asphalt from the leaking, which occurs in the process of mixing and transport. In this study, three kinds of fiber (polyester fiber, polypropylene fiber, and lignin fiber) are used to evaluate the relationship between the fiber types and mechanic performance of SMA-13 fiber asphalt mixture, which is specially designed for field tests of high-speed vehicles on pavements. The micro-surface characteristics of fiber and aggregates were studied by SEM and image analysis. Marshall stability and splitting strength were used to measure the properties of the asphalt mixture. In addition, a field test, including measures for curve-section edge, curve-section center, straight-section edge, and straight-section center, was conducted to evaluate the skid resistance of the high-speed vehicles that test field pavement. The results show that the Marshall stabilities of asphalt mixture with three kinds of fibers have been improved, whereas the stability of asphalt mixture prepared by polypropylene fiber and polyester fiber particularly increased before immersion. Among the three kinds of fiber asphalt mixtures, the polyester fiber asphalt mixture has enhanced water susceptibility. Skid resistance in the field test indicated that high skid resistance and good surface-texture depth were achieved.

4.
J Hazard Mater ; 441: 129836, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36088878

ABSTRACT

The Mn-based catalysts, with low cost and high activity, are believed to be the effective composites for eliminating in-door formaldehyde (HCHO), while the powdered form nanosized catalysts are hardly to apply for practical application. Herein, hetero-structure of nanosheets manganese oxide (MnO2) encapsulating N-doping graphene sphere (GS) were deposited in network-like sponge for constructing 3D catalyst. The prepared MnO2-GS-Sponge composite catalyst exhibited excellent performance for removing HCHO at room temperature compared with GS and commercial MnO2. The MnO2-GS with larger specific surface area (209.1 m2·g-1) was dispersed evenly in 3D network of sponge, which facilitated exposing more activate sites and achieving fast transport kinetics accelerating catalytic reaction for converting 97.1 % of 100 ppm of HCHO continuously to CO2 for 120 h. Moreover, rely on the chemisorption of amino groups on N-doping GS surface, HCHO could be enriched even at low concentrations and efficient elimination (from 1000 ppb to12 ppb, at 35 â„ƒ in 48 h). The average oxidation state and infrared spectra analysis suggested that abundant oxygen vacancies on MnO2-GS-Sponge could be identified as surface-active sites of converting HCHO into the intermediates of dioxymethylene and formate. This work might inspire the designing 3D composite material for potential application in other fields of environmental engineering or energy industrial.

5.
Immunopharmacol Immunotoxicol ; 45(1): 26-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35980837

ABSTRACT

OBJECTIVE: Corynoline is an active substance extracted from Corydalis bungeana Turcz and exerts a therapeutic effect in multiple diseases by alleviating inflammatory response. The present study sought to elucidate the role of corynoline in ulcerative colitis (UC). METHODS: The experimental colitis models were induced in BALB/c mice via receiving a drinking water supplemented with 3.5% (I) dextran sulfate sodium (DSS) ad libitum for 7 days. RESULTS: Corynoline administration inhibited body weight loss, colon shortening, disease activity index and colonic pathomorphological changes in DSS-treated mice. Besides, corynoline down-regulated the levels of pro-inflammatory interleukin (IL)-1ß, IL-6 and tumor necrosis factor Alpha (TNF-α), as well as decreased myeloperoxidase (MPO) activity in the colon of DSS-treated mice. In addition, severe oxidative stress in the colonic tissues of DSS-treated was mitigated by corynoline treatment. However, these beneficial effects were reversed by a specific nuclear factor E2-related factor 2 (Nrf2) inhibitor ML385 intervention. Further evidence confirmed that corynoline promoted Nrf2 nuclear migration and heme oxygenase-1 gene expression in the colonic tissues of UC mice. Besides, corynoline treatment restrained colonic nuclear factor-kappa B (NF-κB) activation as proved by the decrease in phosphorylation and nuclear translocation of NF-κB. CONCLUSIONS: Corynoline ameliorates DSS-induced mouse colitis, which may provide a promising therapeutic strategy for UC treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , NF-kappa B/metabolism , Dextran Sulfate/toxicity , NF-E2-Related Factor 2/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colon/pathology , Disease Models, Animal
6.
Materials (Basel) ; 14(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34772128

ABSTRACT

In order to achieve the highly efficient preparation of high-performance carbon/carbon (C/C) composites, epitaxial grown carbon nanotubes (CNTs) and a pyrocarbon matrix were simultaneously synthesized to fabricate CNT-reinforced C/C composites (CC/C composites). With precise control of the temperature gradient, CNTs and the pyrocarbon matrix could grow synchronously within a 2D needle-punched carbon fiber preform. Surprisingly, the CNTs remained intact within the pyrocarbon matrix at the nano-level, and the CNT-reinforced nano-pyrocarbon matrix was compact, with virtually no gaps and pores, which were tightly connected with the carbon fibers without cracks. Based on the results of Raman analysis, there is less residual stress in the CNT-reinforced pyrocarbon matrix and carbon fibers, and less of a mismatch between the coefficient and thermal expansion. Additionally, CC/C composites fabricated by this method could achieve a low density, open porosity with a large size, and improved mechanical properties. More importantly, our work provides a rational design strategy for the highly efficient preparation and structural design of high-performance CNT-einforced C/C composites.

7.
Materials (Basel) ; 14(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771932

ABSTRACT

A fabrication technology of closed-cell copper foams (CCCFs) based on powder metallurgy is proposed, by using the expanded polystyrene foams (EPS) spheres with the prescribed diameter as the space holder before sintering. The material characterization and the quasi-static compressive behaviors of both uniform and graded CCCFs at different temperatures were experimentally studied. A high temperature weakens the initial compressive modulus, plateau stress, and effective energy absorption for both uniform and graded CCCFs; meanwhile, the onset strain of densification and the maximum energy absorption efficiency are less sensitive to temperature, especially for the graded CCCFs. Compared with the uniform CCCF, the graded CCCF with even a small relative density exhibits superiority in terms of the effective energy absorption and the maximum energy absorption efficiency, attributed to the much larger onset strain of densification for the gradient pore arrangement. Finite element simulations based on the ideal sphere foam model can basically mimic the compressive performance of the CCCF samples. It is also found that both the decrease of pore diameter and the increase of cell wall thickness could improve the compressive performance of the CCCFs.

8.
Sensors (Basel) ; 21(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34640723

ABSTRACT

Load identification is a very important and challenging indirect load measurement method because load identification is an inverse problem solution with ill-conditioned characteristics. A new method of load identification is proposed here, in which a virtual function was introduced to establish integral structure equations of motion, and partial integration was applied to reduce the response types in the equations. The effects of loading duration, the type of basis function, and the number of basis function expansion items on the calculation efficiency and the accuracy of load identification were comprehensively taken into account. Numerical simulation and experimental results showed that our algorithm could not only effectively identify periodic and random loads, but there was also a trade-off between the calculation efficiency and identification accuracy. Additionally, our algorithm can improve the ill-conditionedness of the solution of load identification equations, has better robustness to noise, and has high computational efficiency.


Subject(s)
Algorithms , Computer Simulation
9.
Waste Manag ; 34(12): 2561-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25263217

ABSTRACT

An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful.


Subject(s)
Desiccation , Incineration , Sewage/chemistry , Waste Disposal, Fluid/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...