Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Fundam Res ; 4(2): 412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933511

ABSTRACT

[This corrects the article DOI: 10.1016/j.fmre.2022.09.011.].

3.
ACS Nano ; 18(1): 560-570, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38109426

ABSTRACT

Induced polarization response and integrated magnetic resonance show prosperous advantages in boosting electromagnetic wave absorption but still face huge challenges in revealing the intrinsic mechanism. In this work, we propose a self-confined strategy to construct hierarchical Fe-Co@TiO2 microrods with numerous incoherent heterointerfaces and gradient magnetic domains. The results demonstrate that the use of polyvinylpyrrolidone (PVP) coating is crucial for the subsequent deposition of Co-zeolitic imidazolate frameworks (ZIF-67), the distance of ordered arranged metal ions manipulates the size of magnetic domains, and the pyrolysis of PVP layers restricts the eutectic process of Fe-Co alloys to some extent. As a result, these introduced lattice defects, oxygen vacancies, and incoherent heterointerfaces inevitably generate a strong polarization response, and the regulated gradient magnetic domains realize integrated magnetic resonance, including macroscopic magnetic coupling, long-range magnetic diffraction, and nanoscale magnetic bridge connection, and both of the intrinsic mechanisms in dissipating electromagnetic energy are quantitatively clarified by Lorentz off-axis electron holography. Owing to the cooperative merits, the Fe-Co@TiO2 absorbents exhibit enhanced absorption intensity and strong absorption bandwidth. This study inspires us to develop a generalized strategy for manipulating the size of magnetic domains, and the integrated magnetic resonance theory provides a versatile methodology in clarifying magnetic loss mechanism.

4.
Nat Commun ; 14(1): 6329, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816717

ABSTRACT

The sustainable production of value-added N-heterocycles from available biomass allows to reduce the reliance on fossil resources and creates possibilities for economically and ecologically improved synthesis of fine and bulk chemicals. Herein, we present a unique Ru1CoNP/HAP surface single-atom alloy (SSAA) catalyst, which enables a new type of transformation from the bio-based platform chemical furfural to give N-heterocyclic piperidine. In the presence of NH3 and H2, the desired product is formed under mild conditions with a yield up to 93%. Kinetic studies show that the formation of piperidine proceeds via a series of reaction steps. Initially, in this cascade process, furfural amination to furfurylamine takes place, followed by hydrogenation to tetrahydrofurfurylamine (THFAM) and then ring rearrangement to piperidine. DFT calculations suggest that the Ru1CoNP SSAA structure facilitates the direct ring opening of THFAM resulting in 5-amino-1-pentanol which is quickly converted to piperidine. The value of the presented catalytic strategy is highlighted by the synthesis of an actual drug, alkylated piperidines, and pyridine.

5.
Small ; 19(34): e2301625, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093209

ABSTRACT

Microorganisms display nonequilibrium predator-prey behaviors, such as chasing-escaping and schooling via chemotactic interactions. Even though artificial systems have revealed such biomimetic behaviors, switching between them by control over chemotactic interactions is rare. Here, a spindle-like iron-based metal-organic framework (MOF) colloidal motor which self-propels in glucose and H2 O2 , triggered by UV light is reported. These motors display intrinsic UV light-triggered fuel-dependent chemotactic interactions, which are used to tailor the collective dynamics of active-passive colloidal mixtures. In particular, the mixtures of active MOF motors with passive colloids exhibit distinctive "chasing-escaping" or "schooling" behaviors, depending on glucose or hydrogen peroxide being used as the fuel. The transition in the collective behaviors is attributed to an alteration in the sign of ionic diffusiophoretic interactions, resulting from a change in the ionic clouds produced. This study offers a new strategy on tuning the communication between active and passive colloids, which holds substantial potentials for fundamental research in active matter and practical applications in cargo delivery, chemical sensing, and particle segregation.

6.
Angew Chem Int Ed Engl ; 62(19): e202301024, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912609

ABSTRACT

Polyethylene terephthalate (PET) hydrogenolysis can produce benzene, toluene, and xylene (BTX), where the selectivity control is challenging. We report a reaction pathway dictated by the Ru coordination environment by examining the binding geometries of adsorbates on differently coordinated Ru centers and their evolution during PET hydrogenolysis. A BTX yield of 77 % was obtained using a Ru/TiO2 with a Ru coordination number of ca. 5.0 where edge/corner sites are dominant, while more gas and saturated products were formed for Ru/TiO2 containing primarily terrace sites. Density functional theory and isotopic labelling revealed that under-coordinated Ru edge sites favor "upright" adsorption of aromatic adsorbates while well-coordinated Ru sites favor "flat-lying" adsorption, where the former mitigates ring hydrogenation and opening. This study demonstrates that reaction pathways can be directed through controlled reactant/intermediate binding via tuning of the Ru coordination environment for efficient conversion of PET to BTX.

7.
Anal Bioanal Chem ; 415(7): 1287-1298, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35945289

ABSTRACT

Extracellular vesicles (EVs) have emerged as an attractive drug delivery system owing to their natural roles in intercellular communication. On account of the large intrinsic heterogeneity of EVs, it is highly desirable to evaluate not only the encapsulation efficiency but also the alteration of biological functionality after the drug-loading process at the single-particle level. However, the nanoscale size of EVs poses a great challenge. Taking advantage of nano-flow cytometry (nFCM) in the multiparameter analysis of single EVs as small as 40 nm, six commonly used drug-loading strategies (coincubation, electroporation, extrusion, freeze-thawing, sonication, and surfactant treatment) were exploited by employing doxorubicin (Dox) as the model drug. Encapsulation ratio, EV concentration, drug content, and membrane proteins of Dox-loaded EVs were measured at the single-particle level. Our data indicated that coincubation and electroporation outperformed other methods with an encapsulation ratio of approximately 45% and a higher Dox content in single EVs. Interestingly, the labeling ratios of membrane proteins indicated that varying degrees of damage to the surface proteins of EVs occurred upon extrusion, freeze-thawing, sonication, and surfactant treatment. Confocal fluorescence microscopy and flow cytometry analysis revealed that Dox-loaded EVs prepared by electroporation induced the strongest apoptosis followed by coincubation. These results correlated well with their cellular uptake rate and fundamentally with the Dox encapsulation efficiency of single EVs. nFCM provides a rapid and sensitive platform for single-particle assessment of drug-loading strategies for incorporating drugs into EVs.


Subject(s)
Extracellular Vesicles , Pharmaceutical Preparations/metabolism , Extracellular Vesicles/metabolism , Doxorubicin/pharmacology , Doxorubicin/metabolism , Electroporation/methods , Surface-Active Agents
8.
Fundam Res ; 3(4): 488-504, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38933557

ABSTRACT

Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.

9.
Angew Chem Int Ed Engl ; 61(51): e202215225, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36269685

ABSTRACT

Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e., increasing the distance of adjacent Pd atoms (dPd-a-Pd ) for configuration matching in acetylene semi-hydrogenation against coupling. dPd-a-Pd is identified as a structural descriptor for describing the competitiveness for reaction pathways, and the increased dPd-a-Pd prefers the semi-hydrogenation pathway due to simultaneously promoted C2 H4 desorption and the destabilized transition state of the C2 H3 * coupling. Spectroscopic, kinetics and electronic structure studies reveal that increasing dPd-a-Pd to 3.31 Šdelivers superior selectivity and stability due to energy matching and appropriate hybridization of Pd 4d with In 2s and, especially, 2p orbitals.

10.
Environ Pollut ; 296: 118770, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34974088

ABSTRACT

The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.


Subject(s)
Cladocera , Water Pollutants, Chemical , Animals , Daphnia , Ecosystem , Female , Fresh Water , Humans , Population Dynamics , Water Pollutants, Chemical/toxicity
11.
Phys Rev Lett ; 127(16): 168001, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723584

ABSTRACT

We study experimentally the effect of added salt in the phoretic motion of chemically driven colloidal particles. We show that the response of passive colloids to a fixed active colloid, be it attractive or repulsive, depends on the ionic strength, the ζ potential, and the size of the passive colloids. We further report that the direction of self-propulsion of Janus colloids can be reversed by decreasing their ζ potential below a critical value. By constructing an effective model that treats the colloid and ions as a whole subjected to the concentration field of generated ions and takes into account the joint effect of both generated and background ions in determining the Debye length, we demonstrate that the response of the passive colloids and the velocity of the Janus colloids can be quantitatively captured by this model under the ionic diffusiophoresis theory beyond the infinitely-thin-double-layer limit.

12.
Chemosphere ; 260: 127594, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32673874

ABSTRACT

Salinization of freshwater ecosystems caused by human activities and climate change is a global problem that threatens freshwater resources and aquatic organisms. The aggravation of salinization and the presence of cyanobacterial blooms may pose a serious threat to crustacean zooplankton Daphnia. To test the consequences of these effects, we exposed Daphnia magna to the combined treatments of different chloride concentrations and three food compositions (100% Chlorella pyrenoidosa, 90% C. pyrenoidosa + 10% toxic Microcystis aeruginosa, 80% C. pyrenoidosa + 20% toxic M. aeruginosa) for 21 days, recorded relevant life history indicators, and fitted them using Sigmoidal and Gaussian model if appropriate. Results showed that both increased chloride and the presence of toxic M. aeruginosa in the food had significantly negative effects on key life history traits and clearance rate, and the two factors also had a significant interaction on the survival, development, and reproduction of D. magna. The maximum values of the key life-history traits and clearance rate, the median effect chloride concentrations, and the optimal chloride concentrations derived from the models showed that the survival, reproduction, and clearance rate of D. magna were threatened by high chloride concentrations, which were exacerbated by the presence of toxic M. aeruginosa, but lower concentration of chloride was beneficial to D. magna to resist toxic M. aeruginosa. In conclusion, the combined effects of increasing chloride concentration and cyanobacterial blooms have severely adverse impacts on cladocerans, which may cause cladocera population to decline more rapidly and potentially disrupt the food webs of aquatic ecosystems.


Subject(s)
Adaptation, Physiological/drug effects , Daphnia/drug effects , Fresh Water/chemistry , Microcystis/growth & development , Sodium Chloride/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorella/growth & development , Daphnia/growth & development , Daphnia/physiology , Ecosystem , Food Chain , Humans , Life History Traits , Reproduction/drug effects
13.
Chemosphere ; 248: 126101, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32045977

ABSTRACT

Calcium decline and cyanobacterial blooms pose a serious threat to the crustacean zooplankton Daphnia, which has a high demand for calcium. In the present study, we exposed two different clones of Daphnia pulex to different combinations of calcium concentrations (0.1, 0.5, 1.0, 5.0, 10.0 mg L-1) and food types (100% Chlorella; 80% Chlorella and 20% non-toxic Microcystis; 80% Chlorella and 20% toxic Microcystis) for 16 days, recorded the key life-history traits, and then used an exponential rise function to fit the traits. Results showed toxic Microcystis and low calcium together negatively affected the survival, development, and reproduction of Daphnia. The negative effect of non-toxic Microcystis and low calcium only affected the development and reproduction. The survival time and reproductive performance increased exponentially with increasing calcium concentration and then approached an asymptotic maximum. Both non-toxic and toxic Microcystis reduced the asymptotic maximum of the reproductive performance. The rising rate at which they reached the asymptotes differed significantly among the three food types; i.e., the reproductive performance of Daphnia was affected in a wider range of calcium concentrations under bad food quality. The findings indicated that Microcystis impaired the tolerance of Daphnia to low calcium, which may cause serious consequences in freshwater ecosystems.


Subject(s)
Adaptation, Physiological/drug effects , Calcium/metabolism , Daphnia/drug effects , Life History Traits , Marine Toxins/toxicity , Microcystis/metabolism , Zooplankton/drug effects , Animals , Calcium/pharmacology , Chlorella/metabolism , Dose-Response Relationship, Drug , Ecosystem , Fresh Water/chemistry , Marine Toxins/metabolism , Microcystis/growth & development , Reproduction/drug effects
14.
Chemosphere ; 233: 482-492, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31181495

ABSTRACT

Rise in cyanobacterial blooms and massive discharge of nanoparticles (NPs) in aquatic ecosystems cause zooplankton to be exposed in toxic food and NPs simultaneously, which may impact on zooplankton interactively. Therefore, the present study focused on assessing the combined effects of different ZnO NPs levels (0, 0.10, 0.15, 0.20 mg L-1) and different proportions of toxic Microcystis (0%, 10%, 20%, 30%) in the food on a model zooplankton, Daphnia magna. The results showed that both toxic Microcystis and ZnO NPs significantly delayed the development of D. magna to maturation, but there was no significant interaction between the two factors on the times to maturation except the body length at maturation. Both ZnO NPs and toxic Microcystis also significantly decreased the number of neonates in the first brood, total offspring, and number of broods per female, and there was a significant interaction between ZnO NPs and food composition on the reproductive performance of D. magna. Specifically, presence of toxic Microcystis reduced the gap among the effects of different ZnO NPs concentrations on the reproductive performance of D. magna. When the ZnO NPs concentration was at 0.15 mg L-1, the gap of the reproductive performance among different proportions of toxic Microcystis also tended to be narrow. Similar phenomenon also occurred in mortality. Such results suggested that low concentration of ZnO NPs and toxic Microcystis can mutually attenuate their harmful effects on D. magna, which has significantly implications in appropriately assessing the ecotoxicological effects of emerging pollutants in a complex food conditions.


Subject(s)
Daphnia/drug effects , Microcystis/chemistry , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Zinc Oxide/toxicity , Animals , Female , Food Chain , Humans , Life History Traits , Reproduction/drug effects , Zooplankton/drug effects , Zooplankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...