Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 44(4): 2147-2157, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040964

ABSTRACT

To deal with problems such as the difficult treatment of low-concentration fluoride-containing water and water pollution caused by excessive fluoride (F-) discharge, aluminum and zirconium-modified biochar (AZBC) was prepared and its adsorption characteristics and adsorption mechanism for low-concentration fluoride in water were studied. The results showed that AZBC was a mesoporous biochar with uniform pore structure. It could rapidly adsorb F- from water and reach adsorption equilibrium within 20 min. When the initial ρ(F-) was 10 mg·L-1and the AZBC dosage was 30 g·L-1, the removal rate was 90.7%, and the effluent concentration was lower than 1 mg·L-1. The pHpzc of AZBC was 8.9, and the recommended pH in practical application was 3.2-8.9. The adsorption kinetics accorded with pseudo-second order kinetics, and the adsorption process accorded with the Langmuir model. The maximum adsorption capacities at 25, 35, and 45℃ were 8.91, 11.40, and 13.76 mg·g-1, respectively. Fluoride could be desorbed by 1 mol·L-1 NaOH. The adsorption capacity of AZBC decreased by approximately 15.9% after 5 cycles. The adsorption mechanisms of AZBC were the combination of electrostatic adsorption and ion exchange.Taking actual sewage as theexperimental object, when the AZBC dosage was 10 g·L-1, the ρ(F-) was reduced to below 1 mg·L-1.

2.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 1175-1187, 2023 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-36994580

ABSTRACT

In order to determine the changes of bacterial community structure and function in the early, middle and late stage of aerobic composting of chicken manure, high-throughput sequencing and bioinformatics methods were used to determine and analyze the 16S rRNA sequence of samples at different stages of composting. Wayne analysis showed that most of the bacterial OTUs in the three composting stages were the same, and only about 10% of the operational taxonomic units (OTUs) showed stage specificity. The diversity indexes including Ace, Chao1 and Simpson showed a trend of increasing at first, followed by decreasing. However, there was no significant difference among different composting stages (P < 0.05). The dominant bacteria groups in three composting stages were analyzed at the phylum and genus levels. The dominant bacteria phyla at three composting stages were the same, but the abundances were different. LEfSe (line discriminant analysis (LDA) effect size) method was used to analyze the bacterial biological markers with statistical differences among three stages of composting. From the phylum to genus level, there were 49 markers with significant differences among different groups. The markers included 12 species, 13 genera, 12 families, 8 orders, 1 boundary, and 1 phylum. The most biomarkers were detected at early stage while the least biomarkers were detected at late stage. The microbial diversity was analyzed at the functional pathway level. The function diversity was the highest in the early stage of composting. Following the composting, the microbial function was enriched relatively while the diversity decreased. This study provides theoretical support and technical guidance for the regulation of livestock manure aerobic composting process.


Subject(s)
Composting , Manure , Animals , Manure/microbiology , Chickens/genetics , RNA, Ribosomal, 16S/genetics , Soil , Bacteria/genetics
3.
Environ Technol ; 44(16): 2481-2489, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35107056

ABSTRACT

The hazardous waste penicillin fermentation residue (PR) is a huge hazard to the environment. The bio-oil produced by the pyrolysis of the penicillin fermentation residue has the potential to become a biofuel in the future. This paper studied the pyrolysis characteristics of PR at 400°C ∼700°C. According to the weight loss and weight loss rate of PR, the whole process of pyrolysis can be divided into three stages for analysis: dehydration and volatilization, initial pyrolysis, and pyrolytic char formation. The experimental results showed that the yield of the liquid phase is the highest (33.11%) at 600°C. GC-MS analysis results showed that high temperature is beneficial to reduce the generation of oxygenated hydrocarbons (73%∼31%) and the yield of nitrogenous compounds gradually increased (19%∼43%); the yield of hydrocarbons was low in 400°C∼600°C pyrolysis (2%∼5%) but significantly increased around 700°C (22%). In the temperature range of 400°C to 700°C, the proportion of C5-C13 in bio-oil gradually increased (26%-64%), and the proportion of C14-C22 gradually decreased (47%-16%). The catalyst can increase the proportion of hydrocarbons in the bio-oil component. And the Fe2O3/HZSM-5 mixed catalyst has a significant reduction effect on oxygen-containing hydrocarbons and nitrogen-containing compounds.


Subject(s)
Penicillins , Pyrolysis , Fermentation , Hot Temperature , Hydrocarbons , Catalysis , Biofuels
4.
J Air Waste Manag Assoc ; 73(1): 15-24, 2023 01.
Article in English | MEDLINE | ID: mdl-35759619

ABSTRACT

Hyperthermophilic composting (HTC) is regarded as an effective method for processing sewage sludge. The aim of the study was to investigate effects of using biochar as an amendment on the preservation of nitrogen and passivation of heavy metal during the HTC process of sewage sludge. Results showed that HTC improved the fermentation efficiency and the compost maturity by increases in the temperature and germination index (GI) value, and decreases in the moisture and C/N ratio compared to conventional thermophilic composting. HTC process and the biochar addition resulted in a decrease of the nitrogen loss compared with the control pile during composting by promoting transforming ammonium into nitrite nitrogen. Adding biochar to composting inhibited the transformation of Cu, Zn and Pb into more mobile speciation compared to the control pile although their contents increased during composting, which lead to reduction in availability of heavy metals. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.Implications: The treatment of sewage sludge is imminent due to its threat to general health and ecosystems. This work represents the effects of adding biochar on the preservation of nitrogen and passivation of heavy metal during hyperthermophilic composting of sewage sludge. Our results indicate that the additions of biochar and hyperthermophilic composting engendered the several of positive effects on the preservation of nitrogen and passivation of heavy metal. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.


Subject(s)
Composting , Metals, Heavy , Sewage , Nitrogen , Ecosystem , Soil , Metals, Heavy/analysis
5.
Bioresour Technol ; 368: 128302, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403916

ABSTRACT

In order to tackle the issue of terramycin mycelial dreg (TMD) diagnosis and removal of terramycin and antibiotic resistance genes (ARGs), this study adopted aerobic composting (AC) technology and added homemade compound microbial inoculum (HCMI) to promote the AC of TMD and enhance the removal of terramycin and ARGs. The findings demonstrated that terramycin residue could be basically harmless after AC. Moreover, HCMI not only reduced QacB and tetH but also increased the degradation rates of VanRA, VanT, and dfrA24 by 40.81%, 5.65%, and 54.18%, respectively. The HCMI improved the removal rate of ARG subtypes to a certain extent. According to redundancy analysis, during AC, the succession of the microbial community had a stronger influence on the variance of ARG subtype than the environmental conditions. Differences in the abundance of various bacteria due to changes in temperature may be an intrinsic mechanism for the variation of ARG subtypes.


Subject(s)
Composting , Oxytetracycline , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Mycelium
6.
Environ Sci Pollut Res Int ; 30(1): 1938-1948, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35927400

ABSTRACT

Phosphate (P) removal is significant for water pollution control. In this paper, a novel penicillin biochar modified with zirconium (ZMBC) was synthesized and used to adsorb P in water. The results showed that ZMBC had a porous structure and magnetic properties, and the zirconium (Zr) was mainly present in the form of an amorphous oxide. P adsorption displayed strong pH dependence. The Freundlich model described the adsorption process well, and the saturated adsorption capacity was 27.97 mg/g (25 ℃, pH = 7). The adsorption kinetics were consistent with the pseudo-second-order model, and the adsorption rates were jointly controlled by the surface adsorption stage and intraparticle diffusion stage. Coexisting anion experiments showed that CO32- inhibited P adsorption, reducing the adsorption capacity by 62.63%. The adsorbed P was easily desorbed by washing with a 1 M NaOH solution, and after 5 cycles, the adsorbent had almost the same capacity. The mechanism for P adsorption was inner-sphere complexation and electrostatic adsorption.


Subject(s)
Phosphates , Water Pollutants, Chemical , Phosphates/chemistry , Zirconium/chemistry , Water , Charcoal , Adsorption , Kinetics , Magnetic Phenomena
7.
Front Chem ; 10: 1078877, 2022.
Article in English | MEDLINE | ID: mdl-36583157

ABSTRACT

In this study, biochar was prepared using penicillin fermentation residue (PR) as the raw material by different methods. The adsorption behavior and adsorption mechanism of biochar on tetracycline (TC) in an aqueous environment were investigated. The results showed that K2CO3 as an activator could effectively make porous structures, and that biochar with mesoporous or microporous could be prepared in a controlled manner with two kinds of different activation methods, the dry mixing method and the impregnation method. The dry mixing method could create more mesopores, while the impregnation method could prepare more micropores. Microporous biochar (IKBCH) with a high specific surface area could be prepared by the impregnation method combined with HCl soaking, which has an excellent adsorption effect on tetracycline. When the concentration of tetracycline was 200 mg/L, the removal rate of 99.91% could be achieved with the dosage of microporous biochar at 1 g/L. The adsorption process was in accordance with the Langmuir model and the pseudo-second-order model, respectively. The maximum adsorption capacity of IKBCH was 268.55 mg/g (25°C). The adsorption mechanisms were pore filling, π-π interaction, electrostatic adsorption, and hydrogen bond. Its stable and wide applicability adsorption process does not cause ecological pollution in the aqueous environment, and it is a promising biochar adsorbent.

8.
Bioresour Technol ; 364: 128052, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36191748

ABSTRACT

To address the problem of antibiotic mycelial dreg (AMD) treatment and removal of antibiotic resistance genes (ARGs), this study adopted anaerobic digestion (AD) technology, and added biochar (BC) and biochar loaded with nanosized zero-valent iron (nZVI-BC) to promote the AD of AMD and enhance the removal of ARGs. Results showed that nZVI-BC was better than BC in promoting AD due to the hydrogen evolution corrosion and the synergistic effect of nZVI and BC. In addition, BC and nZVI-BC can enhance the oxidative stress response and reduce ammonia stress phenomenon, which significantly reduces the abundance of aadA, ant(2″)-Ⅰ, qacEdelta1 and sul1. In conclusion, the enhance effect of nZVI-BC is greater than BC. The removal efficiency rates of nZVI-BC on the above-mentioned four ARGs were improved by 33%, 9%, 24% and 11%.

9.
Environ Technol ; : 1-17, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35959951

ABSTRACT

3DOMLaFeO3 was prepared by template method combined with sol-gel method using monodisperse polystyrene (PS) microspheres as template, and Ag/3DOMLaFeO3 perovskite catalyst was prepared by impregnation method combined with sodium borohydride reduction method. The catalysts were characterised by means of TG, XRD, SEM, BET, XPS, UV-vis DRS, etc. The photo-Fenton catalytic performance, stability and catalytic reaction mechanism of Ag/3DOMLaFeO3 were studied with penicillin G potassium (PEN G) as the model pollutant. The results indicated that the as-prepared Ag/3DOMLaFeO3 exhibited a three-dimensional ordered macroporous (3DOM) structure, and the light capture and mass transfer were enhanced through abundant pores and large specific surface area. Based on the surface plasmon resonance effect (SPR), Ag loading enhanced the absorption of the material in the visible light region, and inhibited the recombination of photogenerated carriers, which improved the photocatalytic performance of 3DOMLaFeO3 under visible light. Under the conditions of hydrogen peroxide dosage of 1.5 mL·L-1, initial pH of 5, PEN G initial concentration of 100 mg·L-1, catalyst dosage of 300 mg·L-1, xenon lamp irradiation, the degration ratio of PEN G and the removal rate of TOC reached 99.99% and 85.45% within 120 min, respectively. In addition, it had a wide range of pH application, excellent stability and practical application value. The quenching experiment and ESR test showed that ·OH and ·O2- were the reasons for high catalytic degradation. The least square method was used to fit the experimental data, and the results displayed that the degradation of PEN G was approximately in line with the first-order kinetic reaction.

10.
Water Environ Res ; 94(7): e10763, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35822693

ABSTRACT

A phosphorus removal biochar adsorbent was prepared from Fenton sludge. The adsorption process was optimized, and its phosphorus adsorption mechanism was discussed. It was found that the phosphorus adsorption performance of biochar prepared from single Fenton sludge (FBC-400) was better than that of co-pyrolysis of Fenton sludge and bamboo powder. The optimum condition was that Fenton sludge pyrolyzed at 400°C (FBC-400). FBC-400 had a larger specific surface area than that prepared by co-pyrolysis with bamboo powder. And the high content of iron element could provide a higher surface charge of the biochar, thereby increasing the electrostatic adsorption of phosphorus onto FBC-400. The phosphorus adsorption was highly pH dependent by FBC-400, which can enhance electrostatic adsorption and increase adsorption capacity in acidic conditions. The effect of coexisting anion on adsorption performance was mainly affected by CO3 2- , reducing the adsorption capacity by at least 49%, whereas other anions had no obvious interference. The adsorption process of FBC-400 accorded with the pseudo-second-order kinetic model and the Langmuir model, which indicated that the adsorption process was monolayer adsorption and mainly chemical adsorption, and the maximum saturated phosphorus adsorption capacity was 8.77 mg g-1 . The mechanisms for phosphorus adsorption were electrostatic adsorption and inner-sphere complexing. 1 M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle. PRACTITIONER POINTS: The Fenton sludge biochar usage as an adsorbent could be a win-win strategy to convert waste biomass to valuable - product. The adsorption process accorded with the Langmuir model, the maximum phosphorus adsorption capacity was 8.77 mg/g at 25°C. The adsorption mechanisms were electrostatic adsorption and inner-sphere complexing. 1M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle.


Subject(s)
Phosphorus , Sewage , Charcoal , Powders , Sewage/chemistry , Sodium Hydroxide
11.
Environ Sci Pollut Res Int ; 29(40): 61148-61160, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35438399

ABSTRACT

In this study, the flower-shaped Bi2S3/g-C3N4-2.6 heterojunction obtained by solvothermal method and its photocatalytic degradation efficiency of rhodamine B (RhB) and tetracycline (TC) in aqueous solution within 40 min is as high as 98.8% and 94.6%. For RhB degradation, the photocatalytic reaction rate constant (k) of Bi2S3/g-C3N4-2.6 is approximately 1.8 and 45.5 times that of Bi2S3 and g-C3N4. For TC, k is 3.1 and 2.4 times that of Bi2S3 and g-C3N4, respectively. The key to determining the high catalytic activity of Bi2S3/g-C3N4 lies in the formation of a good heterojunction between Bi2S3 and g-C3N4, which accelerates the electron transfer rate between the heterojunction interface and effectively avoids electron-hole recombination. The effects of catalyst dosage, different pH values, inorganic anions, and capture agents on the photodegradation performance of RhB were investigated. The results show that the catalyst dosage is 1.33 g/L, and the solution pH is in the range of 5-9, which has the best removal effect on pollutants, and the isolation of holes (h+) with strong oxidizing ability promotes the collapse of pollutant molecules. Combined with electrochemical tests, a possible degradation mechanism was advised.


Subject(s)
Environmental Pollutants , Light , Catalysis , Photolysis , Tetracycline , Water
12.
Bioresour Technol ; 348: 126778, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35104655

ABSTRACT

Dry-wet combined anaerobic digestion is a novel approach for treating lignocellulosic waste by increasing the organic load of reactor while accelerating the conversion of organic acids. Here, we investigated the effect of regulated substrate ratios and initial pH in the dry acidogenesis stage on the bioconversion efficiency of dry-wet combined anaerobic digestion. Our data revealed microbial interactions and further identified key microbes based on microbial co-occurrence network analysis. On day three of acidification, the kinetic hydrolysis rate and acidification yield reached 1.66 and 60.07%, respectively; this was attributed to enhancement of the synergistic effect between Clostridiales and Methanosaeta, which increased the proportion of corn straw in the substrate or lowered the initial spray slurry pH to 5.5-6.5. With increased acidification capacity, acetoclastic methanogens were enriched in the wet methanogenesis stage; the syntrophic effect of Syntrophomonadales, Syntrophobacterales and Methanospirillum, meanwhile, was enhanced, leading to an overall improvement in biogas production.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Lignin , Methane
13.
J Colloid Interface Sci ; 607(Pt 1): 857-868, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34534769

ABSTRACT

In this study, a new hollow nanotube material, 30% Co-CHNTs was prepared by the impregnation-chemical reduction-calcination method. This material can be used as a peroxymonosulfate (PMS) activator to catalyse the degradation of sulfamethoxazole (SMX). The best reaction conditions that correspond to the degradation rate of SMX, up to 97.5%, are as follows: the concentration of SMX is 10 mg L-1, the amount of catalyst is 0.20 g L-1, the dosage is 1.625 mM, and the solution pH is 6.00. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectrometry (ICP-OES) show that the calcined composites mainly stimulate an increase in the content of bivalent cobalt in PMS and reduce the leaching of cobalt ions after the reaction. Additionally, the 30% Co-CHNTs + PMS reaction system exhibits a reasonable SMX degradation rate in a natural organic matter solution and excellent stability after three repeated experiments. Furthermore, the possible degradation mechanism in the 30% Co-CHNTs + PMS reaction system was analysed through electron paramagnetic resonance (EPR) and free-radical capture experiments, and it was observed that the non-radical degradation of 1O2 plays a leading role in SMX degradation. Finally, according to the nine degradation intermediates detected by liquid chromatography-mass spectrometry (LC-MS), four possible SMX degradation routes were proposed. This study proved that a 30% Co-CHNTs heterogeneous catalyst is easily prepared, inexpensive, and environmentally friendly and has potential application in antibiotic wastewater treatment.


Subject(s)
Nanotubes , Water Pollutants, Chemical , Clay , Cobalt , Oxides , Peroxides , Sulfamethoxazole , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 286(Pt 3): 131759, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34388433

ABSTRACT

Considering the complexity of traditional cobalt phosphide (Co2P) loaded biochar synthesis research on a simple and efficient synthesis method has practical significance. In this study, after phosphoric acid activation, Neosinocalamus affinis biochar (NAB) and nanoplate Co3O4 quickly formed a Co2P-NAB composite material with high Co2P crystallinity and was uniformly dispersed on the surface of NAB in a microwave reactor. Co2P-NAB has an excellent catalytic degradation effect in the activation of peroxymonosulfate (PMS) to degrade tetracycline (TC). The optimal TC degradation efficiency was achieved with the addition of 50 mg L-1 TC concentration, 0.2 g L-1 catalysts, 0.406 mM PMS and pH = 6.02. In addition, according to the pseudo-first-order reaction rate constant calculation, the composite of Co2P-NAB and PMS the synergy efficiency is 81.55 %. Compared with Co2P-NAB (10.83 %) and PMS (7.62 %) alone, the Co2P-NAB/PMS system has a significant promotion effect on the degradation of TC molecules. Additionally, the Co2P-NAB/PMS system had a TC mineralization rate of 68 % in 30 min. Furthermore, after a series of characterization, detection and analysis, and influencing factor experiments, we proposed a potential mechanism for the Co2P-NAB/PMS reaction system to degrade TC and found that singlet oxygen (1O2) plays an essential role in the non-radical degradation process. Finally, according to the liquid chromatography-mass spectrometry (LC-MS) detection of TC degradation intermediates, a possible degradation route was proposed. Therefore, this work uses microwave technology to present a novel and simple synthesis method for transition metal phosphides, which provides potential application value for the treatment of actual wastewater with heterogeneous catalysts.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Charcoal , Hydrogen-Ion Concentration , Peroxides
15.
J Hazard Mater ; 425: 127496, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896709

ABSTRACT

Current knowledge of dissolved organic matter (DOM) in semi-permeable membrane-covered thermophilic compost (smHTC) is limited. Therefore, this study provided a comprehensive characterization of composition and transformation of DOM in smHTC using multiple spectroscopic methods and ultrahigh resolution mass spectrometry. The results showed that the values of SUVA280, SUVA254, A240-400 (0.042, 0.048, 34.193) in smHTC were higher than those of conventional thermophilic composting (cTC) (0.030, 0.037, 18.348), and the increment of PV,n in smHTC were 2.4 times higher than that of cTC. These results suggested that smHTC accelerated the humification process by promoting the degradation of labile DOM and the production of humus-like substances. Mass spectrometry further confirmed that the DOM of smHTC possessed higher degree of aromatization and humification, based on the lower H/C (1.14), higher aromaticity index (0.34) and double bond equivalence (10.36). Additionally, smHTC increased the proportion of carboxyl-rich, unsaturated and aromatic compounds, and simultaneously improved the degradation of aliphatic/proteins, lipids, carbohydrates, along with even some refractory substances such as CHO subcategory (24.1%), especially lignin-like structures (14.8%). This investigation provided molecular insights into the composition and transformations of DOM in smHTC, and extended the current molecular mechanisms of humification in composting.


Subject(s)
Composting , Dissolved Organic Matter , Mass Spectrometry , Organic Chemicals , Soil
16.
Bioresour Technol ; 342: 126073, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34606924

ABSTRACT

Dry anaerobic digestion (dry-AD) allows high-solid digestion; however, dry-AD application is limited because it is prone to blockage and intermediate inhibition. Here, we reported innovative continuous dry co-digestion systems at both lab and pilot scales. The effects of digestate recirculation ratio, dry mass ratio of cow dung to corn straw (CD:CS), and TS content on the digestion performance were investigated. The effects of the three factors were ranked as follows: TS content > CD:CS > digestate recirculation ratio. The daily biogas production rate reached 0.386 NL/d/g VS with the optimal parameter combination, which was determined to be TS content of 30%, a substrate ratio of 1:3, and a digestate recirculation ratio of 40%. In addition, increasing the CD:CS and TS content increased digestate viscosity, which inhibited biogas production; however, increased abundance of Proteiniphilum and acetoclastic methanogens facilitated biogas production. This study provides empirical support for further application of dry-AD.


Subject(s)
Methane , Zea mays , Anaerobiosis , Animals , Biofuels , Bioreactors , Cattle , Digestion , Female , Manure
17.
Huan Jing Ke Xue ; 42(7): 3176-3185, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212643

ABSTRACT

In order to reveal the interaction of overlying water-interstitial water nitrogen and phosphorus nutrient salt in summer at the entrance region of Baiyangdian Lake, this study sampled six main rivers in the region during July 2019. An analysis of the overlying water and interstitial water quality characteristics and the diffusion flux of applied nutrients at the sediment-water interface revealed the effects of nutrient diffusion on sediments and overlying water. The overlying water analysis showed that the water quality was slightly alkaline in the Baiyangdian Lake. The content of dissolved oxygen (DO) was lower, which provided an anaerobic environment for the release of endogenous pollutants from sediments. The ammonia nitrogen (NH4+-N) ranged from 0.35 to 1.76 mg·L-1, and the content of ammonia nitrogen was the highest in the Zhulong River, which was the main source of water supply. The nitrate nitrogen (NO3--N) content ranged from 0.75 to 1.97 mg·L-1. The total dissolved nitrogen (TDN) ranged from 0.99 to 2.70 mg·L-1, and the content of TDN was the highest in Puhe River. The content of total dissolved phosphorus (TDP) was 0.03 to 0.15 mg·L-1, and the content of TDP was the highest was Baigouyin River, which is near the residential area. The results indicated that the content of ammonia nitrogen in the interstitial water was between 5.24 and 10.64 mg·L-1, which was 10 times that of the overlying water, and endogenous pollution in the former was severe. The nitrate nitrogen content ranged from 0.36 to 0.79 mg·L-1. The total dissolved nitrogen content was between 5.36 and 12.02 mg·L-1, which was 5 times higher than that of the overlying water. The total dissolved phosphorus was between 0.03 and 0.3 mg·L-1. According to integrated pollution index, the degree of interstitial water pollution was much higher than that of overlying water, and the sampling points are seriously polluted. The exchange flux analysis of NH4+-N, TDN, and TDP demonstrated that the diffusion flux of NH4+-N was between 1.71 and 7.43 mg·(m2·d)-1, and the diffusion rate of endogenous ammonia nitrogen to the overlying water was fastest in Fu River, the absorbing river in Baoding. The diffusion flux of total dissolved nitrogen was lower in the Baigouyin River, and the other five sample points averaged 9.11 mg·(m2·d)-1. In summer, the dissolved oxygen was lower and the water-sediment had a larger concentration difference, which led to massive nitrogen nutrient of sediment in anaerobic conditions released to the overlying water in great quantities that caused the serious pollution. The diffusion flux of dissolved total phosphorus showed that the sediment of Pinghe River acted as a "sink" of phosphorus nutrients, and the other sampling points ranged from 0.03 to 0.16 mg·(m2·d)-1, showing the state of phosphorus nutrient released upward to the overlying water. Finally, diffusion flux indicated that endogenous pollutants are crucial sources of overlying water pollutants. In order to effectively control the water quality in the entrance area, desilting the nitrogen and phosphorus nutrient salt of sediment is urgently required.


Subject(s)
Water Pollutants, Chemical , Water Quality , China , Environmental Monitoring , Geologic Sediments , Lakes , Nitrogen/analysis , Phosphorus/analysis , Water , Water Pollutants, Chemical/analysis
18.
Huan Jing Ke Xue ; 42(8): 3730-3742, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309259

ABSTRACT

The sources and distribution of dissolved organic matter (DOM) in the interstitial water of Baiyangdian Lake sediments were analyzed using the ultraviolet-visible absorption spectrum (UV-vis) method and three-dimensional excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC). Results showed that the DOM concentrations and molecular weight were significantly higher in summer than in spring and autumn, based on a254 and E2/E3 values. Three protein-like substance (C1, C2, and C3) and two humic-like substances (C4, C5) were identified with the PARAFAC model. Moreover, protein-like substances accounted for the majority of DOM, reaching (63.56±16.07)%. Total DOM fluorescence intensity, the fluorescence intensity of each component, and the relative abundance exhibited significant spatial variation among the different functional zones in Baiyangdian Lake. Protein-like substances were mainly found in the breeding area, whereas humic-like substances mainly occurred in the natural area. The high BIX, FI, ß:α, and low HIX indicated that DOM in sediment interstitial water exhibited low humification and highly autochthonous characteristics. Moreover, the perfect regression equations between water quality and the fluorescent components could provide a useful reference for managers aiming to protect the ecosystem of Baiyangdian Lake.


Subject(s)
Dissolved Organic Matter , Lakes , Ecosystem , Humic Substances/analysis , Spectrometry, Fluorescence , Water , Water Quality
19.
Sci Total Environ ; 776: 145596, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33652310

ABSTRACT

Hydrothermal liquefaction (HTL) is a promising thermochemical technology for the treatment of hazardous wastes such as penicillin residue (PR). For the treatment of aqueous waste produced by PR in the HTL process, aqueous phase circulation is an attractive solution, both environmentally and economically. The present study shows that aqueous phase circulation can promote the transfer of organic matter from the aqueous phase to bio-oil. The content of organic acids and alcohols in the aqueous phase decreased significantly, and the bio-oil yield and energy recovery efficiency also increased. Under non-catalytic conditions, the bio-oil yield increased from 26.09 wt% to 33.72 wt%. The use of Na2CO3 as a catalyst further improved the bio-oil yield. After a single aqueous phase circulation, the bio-oil yield increased to 34.63 wt%, and the energy recovery efficiency increased to 66.94%. Under catalytic hydrothermal conditions, the content of organic acids in the bio-oil was reduced using aqueous phase circulations, which improved the quality of the bio-oil. At the same time, the Na2CO3 catalyst promoted the hydrolysis of PR to form small molecule organic matter, inhibited the formation of coke, and reduced the content of carbon, hydrogen and oxygen in the solid residue. An increase of cycle times led to excessive accumulation of Na2CO3, which had a negative impact on the yield of bio-oil. Nitrogen-containing compounds in the bio-oil increased to a certain extent, which renders it necessary to consider denitrification treatments in the future. The work provides a useful reference for further research on the preparation of high quality bio-oil by PR hydrothermal liquefaction.


Subject(s)
Biofuels , Penicillins , Biomass , Plant Oils , Polyphenols , Temperature , Water
20.
Sci Total Environ ; 767: 144977, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33636768

ABSTRACT

Antibiotic fermentation residue (AR) is composed of hazardous organic waste produced by the pharmaceutical industry. AR can be effectively converted into bio-oil by fast pyrolysis, but its high nitrogen content limits the prospect of bio-oil as a fuel resource. In order to further reduce the nitrogen content of AR bio-oil, we have examined the catalytic removal of N and O from penicillin fermentation residue (PR) bio-oil under fast pyrolysis conditions. We have used M/HZSM-5 (M = Fe, Co, Ni, Cu, Zn, Zr, Mo, Ag and Ce) metal catalysts, with a metal oxide content of 10%. Additionally, the effect of mixed and separated catalytic forms on catalytic upgrading were analyzed, and changes in the catalyst itself before and after pyrolysis under separated catalytic conditions were specifically investigated. Our results show that the metal elements in the fresh catalyst will exist in the form of oxides, ions and simple metals. In-situ reduction caused by pyrolysis gas in the catalytic pyrolysis process makes some ionic metals (e.g., Co2+, Cu2+ and Ag+) in the catalyst transform into oxides, and some metal oxides are reduced to simple metals or suboxides (including Fe, Ni, Cu and Mo). The N content in the mixed catalytic bio-oil decreased from 10.09 wt% to Zn/HZSM-5 (6.98 wt%), Co/HZSM-5 (7.1 wt%), Cu/HZSM-5 (7.18 wt%) and Ce/HZSM-5 (7.18 wt%). We also observed significant reduction in the O content (9.77 wt%) with Ag/HZSM-5 (3.75 wt%), Mo/HZSM-5 (6.86 wt%), Ce/HZSM-5 (8.39 wt%) and Fe/HZSM-5 (8.54 wt%) in the separated catalytic bio-oil. The Ni/HZSM-5 catalystcan reduce the organic acid content in bio-oil from 22.9% to 10.8%. The separated catalysis methodology also promoted an increase of hydrocarbons in the bio-oil: Zn/HZSM-5, Ag/HZSM-5, Mo/HZSM-5, Zr/HZSM-5 and Ce/HZSM-5 reached 11.6%, 11.5%, 11.1%, 10.1%, and 8.8%, respectively. Carbon deposition formed by aromatic carbon/graphite carbon, pyrrole and pyridine compounds leads to deactivation of the catalyst.


Subject(s)
Biofuels , Penicillins , Biomass , Catalysis , Fermentation , Hot Temperature , Plant Oils , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...