Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Yi Chuan ; 35(11): 1317-26, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24579315

ABSTRACT

The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient.


Subject(s)
Anion Transport Proteins/genetics , Evolution, Molecular , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Sulfites/metabolism , Amino Acid Sequence , Anion Transport Proteins/chemistry , Anion Transport Proteins/metabolism , Biological Transport , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Selection, Genetic , Sequence Alignment , Wine/microbiology
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(8): 2151-6, 2010 Aug.
Article in Chinese | MEDLINE | ID: mdl-20939327

ABSTRACT

Measuring the levels of 2,6-pyridine dicarboxylic acid (DPA) in bacteria spores could provide the information about the DPA function, resistance mechanism and the mechanism of spore germination. The authors have measured levels of Ca-DPA of individual spores of different 19 kinds of Bacillus which from different sources, species, and strains by using laser tweezers Raman spectroscopy (LTRS). Also we have verified the reproducibility of the system simultaneously. To investigate the biochemical components and structure in single spore, a Raman tweezers setup was used to record the Raman spectrum of single spore. A NIR laser beam (30 mW, 785 nm) was introduced into an inverted microscope to form a tweezers for trapping the spore suspended in water, and the Raman scatter was excited by the same beam. Raman spectra of 30 spores of 19 bacillus strains which collected from different area in China were recorded, and 100 spores of B. subtilis ACCC10243 were measured. A spore of the same strain was probed 100 times for verifying the reproducibility of the LTRS system. A Matlab 7.0 edited program and Origin 8.0 were used to process the spectral data. Because Ca-DPA is the chelate of DPA and the calcium ion, and the strongest Raman bands at 1 017 cm(-1) was from Ca-DPA component of the spore, its intensity was linearly with the Ca-DPA concentration. Therefore, the 1017 cm(-1) bands of Ca-DPA could be used as the quantitative standard peak, and then calculated the concentration of Ca-DPA could be calculated according the intensity of 1017 cm(-1) peak. The results showed that Raman spectra of single spore can reflect the characteristics information of it. The diversity of Ca-DPA levels not only happened between different species and strains of bacillus, but also happened between different individual spores in the same strains of bacillus. Conclusion from these measurements is that there is heterogeneity in different individual spores. It is convenient to trapping and collecting its Raman spectrum in water directly, and then get the information of the level of DPA, without the complex preparation of separating, purifying spores and abstracting DPA, so we predict LTRS as a high sensitivity, high accuracy, rapid and effective method in the research of individual spores.


Subject(s)
Bacillus , Calcium/analysis , Pyridines/analysis , Spores, Bacterial , China , Optical Tweezers , Picolinic Acids , Reproducibility of Results , Spectrum Analysis, Raman , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...