Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Biotechnol Rep (Amst) ; 41: e00823, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38179180

ABSTRACT

Salt lakes are significant components of global inland waters. Salt lake (SL) water can provide precious mineral resource for microbial growth. The prospect of utilizing diluted SL water for cultivation of a terrestrial oil-producing microalga Vischeria sp. WL1 was evaluated under laboratory conditions. Based on the detected mineral element composition, the water from Gouchi Salt Lake was diluted 2, 4, 6 and 8 folds and used with supplementation of additional nitrogen, phosphorus and iron (SL+ water). It was found that 4 folds diluted SL+ water was most favorable for biomass and oil production. When cultivated in this condition, Vischeria sp. WL1 gained a biomass yield of 0.82 g L-1 and an oil yield of 0.56 g L-1 after 24 days of cultivation, which is comparable to the optimum productivity we previously established. In addition, total monounsaturated fatty acid contents (64.4∼68.1 %) of the oils resulted from cultures in diluted SL+waters were higher than that in the control (55.5 %). It was also noteworthy that in all these cultures the oil contents (652.0∼681.0 mg g-1) accounted for the most of the biomass, which are far more than the protein and starch contents. This study demonstrates the feasibility of using SL water as a cost-effective mineral resource to cultivate microalgae for biomass and oil production.

2.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38146915

ABSTRACT

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Subject(s)
Bacterial Proteins , Open Reading Frames , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Open Reading Frames/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutation
3.
Mar Drugs ; 21(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999418

ABSTRACT

Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized. Then, their positive roles in accumulation, bioactivity modification, and extraction of valuable microalgal metabolites are presented. After the application of NMs in microalgae cultivation, the extracted metabolites, particularly exopolysaccharides, contain trace amounts of NM residues, and thus, the impact of these residues on the functional properties of the metabolites is also evaluated. Finally, the methods for removing NM residues from the extracted metabolites are summarized. This review provides insights into the application of nanotechnology for sustainable production of valuable metabolites in microalgae and will contribute useful information for ongoing and future practice.


Subject(s)
Microalgae , Nanostructures , Microalgae/metabolism , Biotechnology/methods , Biomass , Nanotechnology , Biofuels
4.
New Phytol ; 240(1): 272-284, 2023 10.
Article in English | MEDLINE | ID: mdl-37488721

ABSTRACT

Marine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis. We identify a specific subset of 1076 genes that are differentially expressed in response to stressors that induce an imbalance between energy or resource supply and metabolic capacity, which we termed the diatom environmental stress response (d-ESR). The d-ESR is primarily composed of genes that maintain proteome homeostasis and primary metabolism. Photosynthesis is strongly regulated in response to environmental stressors but chloroplast-encoded genes were predominantly upregulated while the nuclear-encoded genes were mostly downregulated in response to low light and high temperature. In aggregate, these results provide insight into the molecular mechanisms used by diatoms to respond to a range of environmental perturbations and the unique role of the chloroplast in managing environmental stress in diatoms. This study facilitates our understanding of the molecular mechanisms underpinning the ecological success of diatoms in the ocean.


Subject(s)
Diatoms , Diatoms/metabolism , Stress, Physiological/genetics , Phytoplankton/metabolism , Plankton , Proteome/metabolism , Photosynthesis/genetics
5.
J Colloid Interface Sci ; 649: 22-35, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37331107

ABSTRACT

Carbon dots (CDs) have attracted increasing attention for their ability to artificially improve photosynthesis. Microalgal bioproducts have emerged as promising sources of sustainable nutrition and energy. However, the gene regulation mechanism of CDs on microalgae remains unexplored. The study synthesized red-emitting CDs and applied them to Chlamydomonas reinhardtii. Results showed that 0.5 mg/L-CDs acted as light supplements to promote cell division and biomass in C. reinhardtii. CDs improved the energy transfer of PS II, photochemical efficiency of PS II, and photosynthetic electron transfer. The pigment content and carbohydrate production slightly increased, while protein and lipid contents significantly increased (by 28.4% and 27.7%, respectively) in a short cultivation time. Transcriptome analysis identified 1166 differentially expressed genes. CDs resulted in faster cell growth by up-regulating the expression of genes associated with cell growth and death, promoting sister chromatid separation, accelerating the mitotic process and shortening the cell cycle. CDs improved the ability of energy conversion by up-regulating photosynthetic electron transfer-related genes. Carbohydrate metabolism-related genes were regulated and provided more available pyruvate for the citrate cycle. The study provides evidence for the genetic regulation of microalgal bioresources by artificially synthesized CDs.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Carbon/metabolism , Photosynthesis , Electron Transport , Gene Expression Profiling
6.
Mater Horiz ; 10(8): 3090-3100, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37218468

ABSTRACT

Functionalized polymeric mixed ionic-electronic conductors (PMIECs) are highly desired for the development of electrochemical applications, yet are hindered by the limited conventional synthesis techniques. Here, we propose a "graft-onto-polymer" synthesis strategy by post-polymerization functionalization (GOP-PPF) to prepare a family of PMIECs sharing the same backbone while functionalized with varying ethylene glycol (EG) compositions (two, four, and six EG repeating units). Unlike the typical procedure, GOP-PPF uses a nucleophilic aromatic substitution reaction for the facile and versatile attachment of functional units to a pre-synthesized conjugated-polymer precursor. Importantly, these redox-active PMIECs are investigated as a platform for energy storage devices and organic electrochemical transistors (OECTs) in aqueous media. The ion diffusivity, charge mobility and charge-storage capacity can be significantly improved by optimizing the EG composition. Specifically, g2T2-gBT6 containing the highest EG density gives the highest charge-storage capacity exceeding 180 F g-1 among the polymer series, resulting from the improved ion diffusivity. Moreover, g2T2-gBT4 with four EG repeating units exhibits a superior performance compared to its two analogues in OECTs, associated with a high µC* up to 359 F V-1 cm-1 s-1, owing to the optimal balance between ionic-electronic coupling and charge mobility. Through the GOP-PPF, PMIECs can be tailored to access desirable performance metrics at the molecular level.

7.
Open Life Sci ; 18(1): 20220544, 2023.
Article in English | MEDLINE | ID: mdl-37070076

ABSTRACT

Cadmium (Cd) pollution is a global environmental problem. It is of great significance to find a kind of pasture that can grow normally in a cadmium environment, especially in the Tibetan Plateau. We studied the fruit germination and fruit growth of Elymus sinsubmuticus S.L. Chen and Elymus tangutorum (Nevski), native plants of the Tibetan Plateau, in different cadmium environments. The results showed that with increased cadmium stress, the fruit germination rate, final germination rate, fruit-vigor, average germination time, and germination-speed index for the two grass species gradually decreased, and the 50% germination time for the seed gradually increased. Root length, biomass, and the number of leaves decreased in both species. We quantified the fruit germination and growth of plants in the cadmium environment and found that E. sinosubmuticus S.L. Chen had better fruit germination and fruit growth, and it had the development potential of cadmium pollution control.

8.
Adv Mater ; 35(23): e2300252, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36918256

ABSTRACT

Tailoring organic semiconductors to facilitate mixed conduction of ionic and electronic charges when interfaced with an aqueous media has spurred many recent advances in organic bioelectronics. The field is still restricted, however, by very few n-type (electron-transporting) organic semiconductors with adequate performance metrics. Here, a new electron-deficient, fused polycyclic aromatic system, TNR, is reported with excellent n-type mixed conduction properties including a µC* figure-of-merit value exceeding 30 F cm-1 V-1 s-1 for the best performing derivative. Comprising three naphthalene bis-isatin moieties, this new molecular design builds on successful small-molecule mixed conductors; by extending the molecular scaffold into the oligomer domain, good film-forming properties, strong π-π interactions, and consequently excellent charge-transport properties are obtained. Through judicious optimization of the side chains, the linear oligoether and branched alkyl chain derivative bgTNR is obtained which shows superior mixed conduction in an organic electrochemical transistor configuration including an electron mobility around 0.3 cm2 V-1 s-1 . By optimizing the side chains, the dominant molecular packing can be changed from a preferential edge-on orientation (with high charge-transport anisotropy) to an oblique orientation that can support 3D transport pathways which in turn ensure highly efficient mixed conduction properties across the bulk semiconductor film.

9.
Cancer Discov ; 13(4): 910-927, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36715691

ABSTRACT

The human papillomavirus (HPV) genome is integrated into host DNA in most HPV-positive cancers, but the consequences for chromosomal integrity are unknown. Continuous long-read sequencing of oropharyngeal cancers and cancer cell lines identified a previously undescribed form of structural variation, "heterocateny," characterized by diverse, interrelated, and repetitive patterns of concatemerized virus and host DNA segments within a cancer. Unique breakpoints shared across structural variants facilitated stepwise reconstruction of their evolution from a common molecular ancestor. This analysis revealed that virus and virus-host concatemers are unstable and, upon insertion into and excision from chromosomes, facilitate capture, amplification, and recombination of host DNA and chromosomal rearrangements. Evidence of heterocateny was detected in extrachromosomal and intrachromosomal DNA. These findings indicate that heterocateny is driven by the dynamic, aberrant replication and recombination of an oncogenic DNA virus, thereby extending known consequences of HPV integration to include promotion of intratumoral heterogeneity and clonal evolution. SIGNIFICANCE: Long-read sequencing of HPV-positive cancers revealed "heterocateny," a previously unreported form of genomic structural variation characterized by heterogeneous, interrelated, and repetitive genomic rearrangements within a tumor. Heterocateny is driven by unstable concatemerized HPV genomes, which facilitate capture, rearrangement, and amplification of host DNA, and promotes intratumoral heterogeneity and clonal evolution. See related commentary by McBride and White, p. 814. This article is highlighted in the In This Issue feature, p. 799.


Subject(s)
Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Gene Rearrangement , Clonal Evolution/genetics , Virus Integration/genetics , Papillomaviridae/genetics
10.
Mater Horiz ; 10(2): 607-618, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36511773

ABSTRACT

The development of high-performance n-type semiconducting polymers remains a significant challenge. Reported here is the construction of a coplanar backbone via intramolecular hydrogen bonds to dramatically enhance the performance of n-type polymeric mixed conductors operating in aqueous electrolyte. Specifically, glycolated naphthalene tetracarboxylicdiimide (gNDI) couples with vinylene and thiophene to give gNDI-V and gNDI-T, respectively. The hydrogen bonding functionalities are fused to the backbone to ensure a more coplanar backbone and much tighter π-π stacking of gNDI-V than gNDI-T, which is evidenced by density functional theory simulations and grazing-incidence wide-angle X-ray scattering. Importantly, these copolymers are fabricated as the active layer of the aqueous-based electrochromic devices and organic electrochemical transistors (OECTs). gNDI-V exhibits a larger electrochromic contrast (ΔT = 30%) and a higher coloration efficiency (1988 cm2 C-1) than gNDI-T owing to its more efficient ionic-electronic coupling. Moreover, gNDI-V gives the highest electron mobility (0.014 cm2 V-1 s-1) and µC* (2.31 FV-1 cm-1 s-1) reported to date for NDI-based copolymers in OECTs, attributed to the improved thin-film crystallinity and molecular packing promoted by hydrogen bonds. Overall, this work marks a remarkable advance in the n-type polymeric mixed conductors and the hydrogen bond functionalization strategy opens up an avenue to access desirable performance metrics for aqueous-based electrochemical devices.

11.
Adv Sci (Weinh) ; 10(3): e2204872, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437037

ABSTRACT

In the development of high-performance organic thermoelectric devices, n-type materials, especially with small molecule semiconductors, lags far behind p-type materials. In this paper, three small molecules are synthesized based on electron-deficient naphthalene bis-isatin building blocks bearing different alkyl chains with the terminal functionalized with 3-ethylrhodanine unit and studied their aggregation and doping mechanism in detail. It is found that crystallinity plays an essential role in tuning the doping behavior of small molecules. Molecules with too strong crystallinity tend to aggregate with each other to form large crystalline domains, which cause significant performance degradation. While molecules with weak crystallinity can tolerate more dopants, most of them exhibit low mobility. By tuning the crystallinity carefully, organic thermoelectric devices based on C12NR can maintain high mobility and realize effective doping simultaneously, and a high power factor of 1.07 µW m-1 K-2 at 100 °C is realized. This delicate molecular design by modulating crystallinity provides a new avenue for realizing high-performance organic thermoelectric devices.

12.
Angew Chem Int Ed Engl ; 62(1): e202213737, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36349830

ABSTRACT

The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit µC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable µC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.

13.
ACS Appl Mater Interfaces ; 14(38): 43586-43596, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36112127

ABSTRACT

Tuning the film morphology and aggregated structure is a vital means to improve the performance of the mixed ionic-electronic conductors in organic electrochemical transistors (OECTs). Herein, three fluorinated alcohols (FAs), including 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and perfluoro-tert-butanol (PFTB), were employed as the alternative solvents for engineering the n-type small-molecule active layer gNR. Remarkedly, an impressive µC* of 5.12 F V-1 cm-1 s-1 and a normalized transconductance of 1.216 S cm-1 are achieved from the HFIP-fabricated gNR OECTs, which is three times higher than that of chloroform. The operational stability has been significantly enhanced by the FA-fabricated devices. Such enhancements can be ascribed to the aggregation-induced structural ordering by FAs during spin coating, which optimizes the microstructure of the films for a better mixed ion and electron transport. These results prove the huge research potential of FAs to improve OECT materials' processability, device performance, and stability, therefore promoting practical bio-applications.

15.
ACS Appl Mater Interfaces ; 14(14): 16477-16486, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35357117

ABSTRACT

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility. Herein, three small molecules based on perylene diimides are readily prepared for n-type OECTs. The final molecules show preferred energy levels, tunable backbone conformation, and high film crystallinity, rendering them good n-type dopability, favorable volumetric capacities, and substantial electron mobilities. Consequently, the OECTs afford a record-low threshold voltage of 0.05 V and a normalized peak transconductance of 4.52 × 10-2 S cm-1, as well as impressive long-term cycling stability. Significantly, the OECTs utilized for hydrogen peroxide sensing are further demonstrated with a detection limit of 0.75 µM. This work opens the possibility of developing nonfullerene small molecules as superior n-type OECT materials and provides important insights for designing high-performance small-molecule mixed ion-electron conductors for OECTs and (bio)sensors.

16.
J Phycol ; 58(3): 424-435, 2022 06.
Article in English | MEDLINE | ID: mdl-35279831

ABSTRACT

A few groups of cyanobacteria have been characterized as having far-red light photoacclimation (FaRLiP) that results from chlorophyll f (Chl f) production. In this study, using a polyphasic approach, we taxonomically transferred the Cf. Leptolyngbya sp. CCNUW1 isolated from a shaded freshwater pond, which produces Chl f under far-red light, to the genus Kovacikia and named this taxon Kovacikia minuta sp. nov. This strain was morphologically similar to Leptolyngbya-like strains. The thin filaments were purplish-brown under white light but became grass green under far-red light. The 31-gene phylogeny grouped K. minuta CCNU0001 into order Synechococcales and family Leptolyngbyaceae. Phylogenetic analysis based on 16S rRNA gene sequences further showed that K. minuta CCNU0001 was clustered into Kovacikia with similarities of 97.2-97.4% to the recently reported type species of Kovacikia muscicola HA7619-LM3. Additionally, the internal transcribed spacer region between 16S-23S rRNA genes had a unique sequence and secondary structure compared with other Kovacikia strains and phylogenetically related taxa. Draft genome sequences of K. minuta CCNU0001 (8,564,336 bp) were assembled into one circular chromosome and two circular plasmids. A FaRLiP 20-gene cluster comprised two operons with the unique organization. In sum, K. minuta was established as a new species, and it is the first species reported to produce Chl f and for which a draft genome was produced in genus Kovacikia. This study expanded our knowledge regarding the diversity of Chl f-producing cyanobacteria in far-red light-enriched environments and provides important foundational information for future investigations of FaRLiP evolution in cyanobacteria.


Subject(s)
Cyanobacteria , Chlorophyll/analogs & derivatives , Cyanobacteria/genetics , Fresh Water , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
New Phytol ; 234(4): 1363-1376, 2022 05.
Article in English | MEDLINE | ID: mdl-35179783

ABSTRACT

Housekeeping genes (HKGs) are constitutively expressed with low variation across tissues/conditions. They are thought to be highly conserved and fundamental to cellular maintenance, with distinctive genomic features. Here, we identify 1505 HKGs in the unicellular marine diatom Thalassiosira pseudonana based on an RNA-seq analysis of 232 samples taken under 12 experimental conditions over 0-72 h. We identify promising internal reference genes (IRGs) for T. pseudonana from the most stably expressed HKGs. A comparative analysis indicates < 18% of HKGs in T. pseudonana have orthologs in other eukaryotes, including other diatom species. Contrary to work on human tissues, T. pseudonana HKGs are longer than non-HKGs, due to elongated introns. More ancient HKGs tend to be shorter than more recent HKGs, and expression levels of HKGs decrease more rapidly with gene length relative to non-HKGs. Our results indicate that HKGs are highly variable across the tree of life and thus unlikely to be universally fundamental for cellular maintenance. We hypothesize that the distinct genomic features of HKGs of T. pseudonana may be a consequence of selection pressures associated with high expression and low variance across conditions.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/metabolism , Genes, Essential/genetics , Introns/genetics
18.
Front Microbiol ; 12: 737454, 2021.
Article in English | MEDLINE | ID: mdl-34745039

ABSTRACT

Elemental contents change with shifts in macromolecular composition of marine phytoplankton. Recent studies focus on the responses of elemental contents of coccolithophores, a major calcifying phytoplankton group, to changing carbonate chemistry, caused by the dissolution of anthropogenically derived CO2 into the surface ocean. However, the effects of changing carbonate chemistry on biomacromolecules, such as protein and carbohydrate of coccolithophores, are less documented. Here, we disentangled the effects of elevated dissolved inorganic carbon (DIC) concentration (900 to 4,930µmolkg-1) and reduced pH value (8.04 to 7.70) on physiological rates, elemental contents, and macromolecules of the coccolithophore Emiliania huxleyi. Compared to present DIC concentration and pH value, combinations of high DIC concentration and low pH value (ocean acidification) significantly increased pigments content, particulate organic carbon (POC), and carbohydrate content and had less impact on growth rate, maximal relative electron transport rate (rETR max), particulate organic nitrogen (PON), and protein content. In high pH treatments, elevated DIC concentration significantly increased growth rate, pigments content, rETR max, POC, particulate inorganic carbon (PIC), protein, and carbohydrate contents. In low pH treatments, the extents of the increase in growth rate, pigments and carbohydrate content were reduced. Compared to high pH value, under low DIC concentration, low pH value significantly increased POC and PON contents and showed less impact on protein and carbohydrate contents; however, under high DIC concentration, low pH value significantly reduced POC, PON, protein, and carbohydrate contents. These results showed that reduced pH counteracted the positive effects of elevated DIC concentration on growth rate, rETR max, POC, PON, carbohydrate, and protein contents. Elevated DIC concentration and reduced pH acted synergistically to increase the contribution of carbohydrate-carbon to POC, and antagonistically to affect the contribution of protein-nitrogen to PON, which further shifted the carbon/nitrogen ratio of E. huxleyi.

19.
Microbiol Resour Announc ; 10(30): e0038221, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34323615

ABSTRACT

Bacillus species are Gram-positive, aerobic, spore-forming bacteria that are widely spread in soil, dust, and water. One strain, Bacillus sp. strain WL1, was isolated from the surface of the cyanobacterium Nostoc flagelliforme in Yinchuan, Ningxia, China. The draft genome sequence of this strain was 5.62 Mbp.

20.
Chem Sci ; 12(14): 5177-5184, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-34163755

ABSTRACT

Great attention is being increasingly paid to photothermal conversion in the near-infrared (NIR)-II window (1000-1350 nm), where deeper tissue penetration is favored. To date, only a limited number of organic photothermal polymers and relevant theory have been exploited to direct the molecular design of polymers with highly efficient photothermal conversion, specifically in the NIR-II window. This work proposes a fused backbone structure locked via an intramolecular hydrogen bonding interaction and double bond, which favors molecular planarity and rigidity in the ground state and molecular flexibility in the excited state. Following this proposal, a particular class of NIR-II photothermal polymers are prepared. Their remarkable photothermal conversion efficiency is in good agreement with our strategy of coupling polymeric rigidity and flexibility, which accounts for the improved light absorption on going from the ground state to the excited state and nonradiative emission on going from the excited state to the ground state. It is envisioned that such a concept of coupling polymeric rigidity and flexibility will offer great inspiration for developing NIR-II photothermal polymers with the use of other chromophores.

SELECTION OF CITATIONS
SEARCH DETAIL
...