Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Materials (Basel) ; 17(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39336308

ABSTRACT

Magnesium sulphoaluminate (MSA) cement has good bonding properties and is suitable as an inorganic adhesive for repairing materials in civil engineering. However, there are still some problems with its use, such as its insufficient 1 day (d) strength and poor volumetric stability. This paper aims to investigate the influences of metakaolin (MK) on the physical and mechanical properties of magnesium sulphoaluminate (MSA) cement. The hydration products and microstructures of typical MSA cement samples were also analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the addition of metakaolin reduces the fluidity and shortens the setting time of the MSA cement. The initial setting time and final setting time shortened maximally by 15-27 min and 25-48 min, respectively, with the addition of 10-30% metakaolin. Moreover, the compressive strength and flexural strength of the MSA cement improved significantly with the addition of 10-30% metakaolin at a curing age of 1 d. Compared with the compressive and flexural strengths of the control sample at 1 d, the compressive strengths of the modified samples showed obvious increases of 98%, 101%, and 109%, and the flexural strengths increased by 39%, 31%, and 26%, respectively, although they decreased slightly when the curing ages were 7 d, 14 d, and 28 d. The addition of 10% metakaolin improved the water resistance of the MSA cement immersed in water for 7 d and resulted in even higher water resistance at 28 d. The addition of 10-30% metakaolin improved the volumetric stability of the MSA cement with increasing dosages before 28 d of ageing. XRD and SEM-EDS analyses showed that the metakaolin accelerated the early hydration reaction and optimised the phase composition of the MSA cement. The results indicate that the addition of 10-20% metakaolin improved the strength after 1 d of ageing, water resistance, and volumetric stability of the MSA cement, providing theoretical support for the application of MAS cement as an inorganic bonding agent for repairing materials.

2.
Nature ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236747

ABSTRACT

Two-terminal monolithic perovskite-silicon tandem solar cells demonstrate huge advantages in power conversion efficiency (PCE) compared to their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a significant challenge for perovskite-silicon tandem cells3,4. By exploiting the nanoscale discretely distributed LiF ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer intertwined passivation strategy that combines efficient electron extraction with further suppression of nonradiative recombination. We constructed perovskite-silicon tandem devices on double-side textured Czochralski (CZ)-based silicon heterojunction cell, which featured a mildly-textured front surface and a heavily-textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite-silicon tandem achieved an independently certified stabilized PCE of 33.89%, accompanied by an impressive fill factor (FF) of 83.0% and an open-circuit voltage (Voc) of nearly 1.97 volts. To our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley-Queisser limit of 33.7%.

3.
J Hazard Mater ; 479: 135716, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39236543

ABSTRACT

Condensable particulate matter (CPM) and filterable particulate matter (FPM) emitted from industrial sources have been well studied, but their emissions from vehicles have not yet been covered. This study explores the emission characteristics of CPM and FPM from typical diesel vehicles under various driving conditions. The emission factors (EFs) of CPMs under driving conditions were 5.4-10.4 times higher than those of FPMs, while CPMs EFs under transient driving conditions were about 2.5 times higher than those under steady driving conditions. CPM and FPM are mainly composed of organic matter accounting for 53.3 %-92.9 %, while the intermediate and semi-volatile organic compounds dominate the organic matter accounting for 86.3 %-98.6 %. Similar to industrial sources, alkanes are the predominant organic species emitted by diesel vehicles, comprising 42.0 %-64.0 % of the detected organic components. Inorganic CPM is primarily composed of NH4+ , representing 84.9 %-87.6 % of the total, in contrast to industrial sources where SO42- and Cl- dominate. Interestingly, the air pollution control devices installed on diesel vehicles under steady driving conditions perform better in removing organic CPM and producing higher inorganic CPM emissions than those under transient driving conditions. These findings will enhance the comprehensive understanding of particulate matter emitted from diesel vehicles and provide a scientific foundation for the development of related control technologies.

4.
Small ; : e2403098, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162110

ABSTRACT

To meet the ever-increasing demand of proton exchange membrane fuel cell (PEMFC), it is necessary to carry out structure optimization for low-cost and high-stability oxygen reduction reaction (ORR) catalysts. Herein, a zeolitic imidazolate framework (ZIF)-derived carbon material with a mass of heteroatoms and defects is developed and serves as advanced support for nano-Pt-based ORR catalysts. This unique structure enhances the interaction between nano-Pt and support, leading to higher ORR intrinsic activity. During fuel cell applications, it demonstrates impressive water-retaining capacity and electrochemical stability. Under H2-O2 supply without cathode humidification, this catalyst achieves high mass activity of 0.475 A mgPt -1, with only 7.4% attenuation in maximum power density after 20 000 cycles of accelerated durability test, highlighting its remarkable potential for fuel cell applications. Physicochemical characterization and theoretical simulation reveal the crucial anchoring effect of heteroatom-doped defects to nano-Pt, providing valuable insights for further ORR catalyst design and PEMFC applications.

5.
Front Oncol ; 14: 1385695, 2024.
Article in English | MEDLINE | ID: mdl-39188678

ABSTRACT

Gastric calcifying fibrous tumor (CFT) is a rare benign mesenchymal tumor. Several previous studies have reported surgical resection for gastric CFT larger than 20mm for the difficulty in preoperative diagnosis. Here, we report a rare case of large gastric CFT treated with endoscopic submucosal excavation (ESE). A 70-year-old woman presented with recurrent epigastric pain and underwent endoscopy, which revealed a 35mm-sized submucosal tumor in the gastric body. ESE was performed after imaging examination and endoscopic ultrasonography. En bloc resection was achieved, but due to the specimen's substantial size and difficulty in mincing, it posed challenges for removal through the mouth. Finally, the specimen was temporarily placed in the stomach and was completely removed two days later. The diagnosis was confirmed based on pathological and immunohistochemical findings. There was no recurrence during the patient's 11-month follow-up. We provided a case report related to the diagnosis and endoscopic treatment for large gastric CFT. In addition, our experience of temporarily leaving a large postoperative specimen, considered a benign lesion, in the stomach for later removal was successful but requires appropriate timing to avoid blockage of the gastrointestinal tract.

6.
J Hazard Mater ; 476: 135155, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991637

ABSTRACT

The gap between serious soil heavy metals pollution and inefficient soil remediation threatens human health. This study proposed a method to improve the phytoremediation efficiency using bamboo vinegar (BV) solution and the potential mechanism was discussed. The results demonstrated that the application of BV increases the content of cadmium (Cd) in vacuole and cell wall hemicellulose 2 in leaves of Perilla frutescens. Simultaneously, it enhanced enzyme activities of superoxide dismutase and catalase in leaves. Therefore, this process alleviated the damage of Cd to functional tissues of Perilla frutescens, thus improving the tolerance of plants to Cd. Moreover, the BV application reduced the Cd content bound by root cell wall pectin fractions and insoluble phosphate, subsequently improving the ability of oxalic acids to carry Cd to the aerial parts. Consequently, the aerial parts obtained a larger amount of Cd enrichment. Overall, the Transfer Factor of Cd from roots to stems and enrichment of Cd in Perilla frutescens were maximally increased by 57.70 % and 54.03 % with the application of 50-fold and 300-fold diluted BV under 2 mg·L-1 Cd stress, respectively. The results can provide a theoretical basis for the promotion of phytoremediation of Cd-contaminated soil treatment technology.


Subject(s)
Acetic Acid , Biodegradation, Environmental , Cadmium , Perilla frutescens , Soil Pollutants , Cadmium/metabolism , Cadmium/toxicity , Acetic Acid/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Perilla frutescens/metabolism , Perilla frutescens/chemistry , Membrane Lipids/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Catalase/metabolism , Superoxide Dismutase/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Polysaccharides/metabolism
7.
ACS Omega ; 9(28): 30452-30460, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035937

ABSTRACT

Passive NO x adsorber (PNA) materials are primarily considered for reducing nitrogen oxide emissions during the low-temperature cold start of a motor vehicle. Pd/SSZ-13 has attracted considerable attention because of its outstanding hydrothermal stability and sulfur resistance. Optimizing the dispersion of precious metal Pd in Pd/SSZ-13 is crucial for enhancing PNA performance and nitrogen oxide adsorption capability. In this study, we prepared Pd/SSZ-13 using different methods and evaluated their influence on the NO x adsorption capability. The characterization results show that the dispersion of precious metal Pd in the Pd/SSZ-13 catalyst prepared by the quantitative ion-exchange method is as high as 92.13%, and the loading amount is as high as 98.93%. Pd predominantly exists as Pd2+, achieving near-total loading and further improving the catalyst's NO x adsorption capacity. This study offers innovative approaches and methods for applying Pd/SSZ-13 as a PNA material, serving as a reference for its further optimization and performance enhancement. Continued research into the preparation and adsorption performance of Pd/SSZ-13 materials could offer solutions to reduce motor vehicle nitrogen oxide emissions.

8.
Environ Sci Technol ; 58(23): 10388-10397, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38828512

ABSTRACT

Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.


Subject(s)
Zeolites , Zeolites/chemistry , Catalysis , Oxidation-Reduction , Nitrogen Oxides/chemistry , Oxides/chemistry , Ammonia/chemistry , Denitrification , Metals/chemistry
9.
Polymers (Basel) ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675085

ABSTRACT

A three-dimensional helix geometry unit cell is established to simulate the complex spatial configuration of 3D braided composites. Initially, different types of yarn factors, such as yarn path, cross-sectional shape, properties, and braid direction, are explained. Then, the multiphase finite element method is used to develop a new theoretical calculation procedure based on the unit cell for predicting the impacts of environmental temperature on the thermophysical properties of 3D four-direction carbon/epoxy braided composites. The changing rule and distribution characteristics of the thermophysical properties for 3D four-direction carbon/epoxy braided composites are obtained at temperatures ranging from room temperature to 200 °C. The influences of environmental temperature on the coefficients of thermal expansion (CTE) and the coefficients of thermal conduction (CTC) are evaluated, by which some important conclusions are drawn. A comparison is conducted between theoretical and experimental results, revealing that variations in temperature exert a notable influence on the thermophysical characteristics of 3D four-directional carbon/epoxy braided composites. The theoretical calculation procedure is an effective tool for the mechanical property analysis of composite materials with complex geometries.

10.
Sci China Life Sci ; 67(6): 1133-1154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568343

ABSTRACT

Detecting genes that affect specific traits (such as human diseases and crop yields) is important for treating complex diseases and improving crop quality. A genome-wide association study (GWAS) provides new insights and directions for understanding complex traits by identifying important single nucleotide polymorphisms. Many GWAS summary statistics data related to various complex traits have been gathered recently. Studies have shown that GWAS risk loci and expression quantitative trait loci (eQTLs) often have a lot of overlaps, which makes gene expression gradually become an important intermediary to reveal the regulatory role of GWAS. In this review, we review three types of gene-trait association detection methods of integrating GWAS summary statistics and eQTLs data, namely colocalization methods, transcriptome-wide association study-oriented approaches, and Mendelian randomization-related methods. At the theoretical level, we discussed the differences, relationships, advantages, and disadvantages of various algorithms in the three kinds of gene-trait association detection methods. To further discuss the performance of various methods, we summarize the significant gene sets that influence high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride reported in 16 studies. We discuss the performance of various algorithms using the datasets of the four lipid traits. The advantages and limitations of various algorithms are analyzed based on experimental results, and we suggest directions for follow-up studies on detecting gene-trait associations.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genome-Wide Association Study/methods , Humans , Algorithms , Mendelian Randomization Analysis , Transcriptome/genetics
11.
ACS Omega ; 9(1): 97-116, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222571

ABSTRACT

With increasing concerns about carbon emissions and the resulting climate impacts, Li-ion batteries have become one of the most attractive energy sources, especially in the transportation sector. For Li-ion batteries, an effective thermal management system is essential to ensure high-efficiency operation, avoid capacity degradation, and eliminate safety issues. Thermal management systems based on heat pipes can achieve excellent cooling performance in limited space and thus have been widely used for the temperature control of Li-ion batteries. In this paper, the thermal management systems of Li-ion batteries based on four types of heat pipes, i.e., flat single-channel heat pipes, oscillating heat pipes, flexible heat pipes, and microchannel heat pipes, are comprehensively reviewed based on the studies in the past 20 years. The effects of different influencing factors on the cooling performance and thermal runaway behavior of Li-ion batteries are thoroughly discussed in order to provide an in-depth understanding for researchers and engineers. It is concluded that for all types of thermal management systems based on heat pipes, water spray cooling could achieve better cooling performance than forced air cooling and water bath cooling, while its energy consumption is obviously smaller than forced air cooling. For thermal management systems based on oscillating heat pipes, improved heat transfer characteristics could be achieved by increasing the number of turns, using a relatively larger inner hydraulic diameter and using a length ratio between the evaporator and condenser higher than 1.0. Heat pipes fabricated by flexible materials suffer from permeation of noncondensable gases from ambient and leakage of working fluid. These issues could be partly resolved by adding thermal vias filled with metallic materials and covering the sealing part with indium coating or designing a multilayered structure with metallic materials in it. Moreover, the limitations and future trends of Li-ion battery thermal management systems based on heat pipes are presented. It is pointed out that the thermal runaway behavior and heating performance of battery thermal management systems based on heat pipes should be further elaborated. The analysis of this paper could provide valuable support for future investigations on Li-ion battery thermal management systems based on heat pipes; it could also guide the choice and design of Li-ion battery thermal management systems based on heat pipes in commercial use.

12.
Nature ; 626(7997): 105-110, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297175

ABSTRACT

Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.

13.
J Colloid Interface Sci ; 657: 334-343, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043235

ABSTRACT

Reconstruction universally occurs over non-layered transition metal sulfides (TMSs) during oxygen evolution reaction (OER), leading to the formation of active species metal (oxy)hydroxide and thus significantly influences the OER performance. However, the reconstruction process and underlying mechanism quantitatively remain largely unexplored. Herein, we proposed an electrochemical reaction mechanism, namely sulfide oxidation reaction (SOR), to elucidate the reconstruction process of pyrite-type TMSs. Based on this mechanism, we evaluated the reconstruction capability of NiS2 doped with transition metals V, Cr, Mn, Fe, Co, Cu, Mo, Ru, Rh, and Ir within different doped systems. Two key descriptors were thus proposed to describe the reconstruction abilities of TMSs: USOR (the theoretical electric potential of SOR) and ΔU (the difference between the theoretical electric potential of SOR and OER), representing the initiation electric potential of reconstruction and the intrinsic reconstruction abilities of TMSs, respectively. Our finding shows that a lower USOR readily initiate reconstruction at a lower potential and a larger ΔU indicating a poorer reconstruction ability of the catalyst during OER. Furthermore, Fe-doped CoS2 was used to validate the rationality of our proposed descriptors, being consistent with the experiment findings. Our work provides a new perspective on understanding the reconstruction mechanism and quantifying the reconstruction of TMSs.

14.
Medicine (Baltimore) ; 102(34): e34977, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653753

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the fourth most frequently diagnosed cancer and the fourth leading cause of cancer-related death in women. Identifying new biomarkers for the early detection of CC is an essential requirement in this field. CXCL8 was originally discovered because of its role in inflammation by binding to CXCR1 and CXCR2; however, it is now known to play an important role in cancer. In this study, we aimed to evaluate the expression levels of potential biomarkers (CXCL8, CXCR1, and CXCR2) and to explore their diagnostic potential in CC. METHODS: The expression levels of serum CXCL8, CXCR1, and CXCR2 were investigated by kit method on Immulite-1000 in 30 healthy volunteers, 30 precancerous patients and 70 CC patients. RESULTS: The results indicated that the expression of CXCL8 and CXCR2 was significantly higher in the serum of CC patients than in healthy volunteers, similar to the well-established tumor marker (squamous-cell cancerantigen [SCC]). Receiver operating characteristic analyses showed that the combination of CXCL8, CXCR2, and SCC had the highest diagnostic sensitivity and area under the curve value. Meanwhile, the positive predictive value and negative predictive value were not very low. Moreover, high concentrations of CXCL8 and CXCR2 are associated with an increased risk of CC. CONCLUSIONS: In conclusion, our data demonstrated that combined serum CXCL8, CXCR2, and SCC measurements are helpful for CC diagnosis and can be used as potential biomarkers for the early detection of CC. Cytokines, such as CXCL8 and CXCR2, can be easily measured in most university hospital laboratories and in some private laboratories with a routine test.


Subject(s)
Laboratories, Hospital , Uterine Cervical Neoplasms , Humans , Female , Early Detection of Cancer , Uterine Cervical Neoplasms/diagnosis , Cytokines , Epithelial Cells , Receptors, Interleukin-8B
15.
J Hazard Mater ; 459: 132236, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37572604

ABSTRACT

The water-soluble inorganic ions (WSII) in diesel particulate matter (DPM) have a significant impact on ambient air quality and human health. In this study, the 12 groups of bench tests were conducted to analyze the emission characteristics of two diesel engines, taking into account the influence of engine parameters, test cycle, fuel types, and after-treatment measures. Compared to conventional diesel, a blend of diesel with 5 % biodiesel resulted in a reduction of the WSII emission factors by 23.7-48.0 %. The emission factors of WSII decreased by 8.4 % after installing selective catalytic reduction (SCR). Dummy variable regression analysis was used to analyze the relationship between WSII and influencing factors. The emission factors of Na+, K+, and Ca2+ were mostly affected by the engine, potentially due to the use of coolants and lubricants containing metal oxides in the engine. The emission factors of NO3- were mainly affected by the test cycle. Techniques for order preference by similarity to ideal solution (TOPSIS) were used to analyze the priority of emission reduction technologies. The results indicated that SCR, biodiesel, and low-sulfur diesel could effectively reduce WSII. This study aims to explore the influence of multiple factors on WSII, providing valuable insights for future research on WSII in DPM.

16.
Clin Cardiol ; 46(8): 877-885, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37417371

ABSTRACT

Drug-coated balloons (DCBs) have been used in dialysis patients with arteriovenous fistula (AVF) stenosis, but whether DCBs have advantages over ordinary balloons is still controversial. A meta-analysis was designed to investigate the safety and efficacy of DCBs and common balloons (CBs) in the treatment of AVF stenosis. We searched the PubMed, EMBASE, and China National Knowledge Internet (CNKI) databases for randomized controlled trials that evaluated the comparison of DCB angioplasty versus CB angioplasty for AVF stenosis in dialysis patients and reported at least one outcome of interest. The results showed that the DCB group had a higher first-stage patency rate of the target lesion 6 months [odds ratio, OR = 2.31, 95% confidence interval, CI: (1.69, 3.15), p < .01] and 12 months [OR = 2.09, 95% CI: (1.50, 2.91), p < .01] after surgery. There was no statistically significant difference in all-cause mortality between the two groups at 6 months [OR = 0.85, 95% CI: (0.47, 1.52), p = .58] and 12 months [OR = 0.99, 95% CI: (0.60, 1.64), p = .97]. Compared with CB, DCBs as a new endovascular treatment for AVF stenosis have a higher primary patency rate of target lesions and can delay the occurrence of restenosis. There is no evidence that DCB can increase the mortality of patients.


Subject(s)
Angioplasty, Balloon , Arteriovenous Fistula , Humans , Vascular Patency , Graft Occlusion, Vascular/diagnosis , Graft Occlusion, Vascular/etiology , Graft Occlusion, Vascular/therapy , Constriction, Pathologic/complications , Treatment Outcome , Coated Materials, Biocompatible , Time Factors , Angioplasty, Balloon/adverse effects , Angioplasty, Balloon/methods , Arteriovenous Fistula/diagnosis , Arteriovenous Fistula/therapy , Arteriovenous Fistula/complications , Paclitaxel
17.
Acta Pharm Sin B ; 13(4): 1755-1770, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139429

ABSTRACT

For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.

18.
Nephron ; 147(5): 301-310, 2023.
Article in English | MEDLINE | ID: mdl-36349777

ABSTRACT

INTRODUCTION: IgA nephropathy is the most common primary glomerulonephritis among adults in clinic. Thin basement membrane nephropathy is often underestimated or even omitted if it coincides with IgA nephropathy. Therefore, it is necessary to study the epidemiological, clinical, and molecular characteristics of the concurrence of this entity. METHODS: Eight patients with concurrent IgA nephropathy and thin basement membrane nephropathy (IgA-T) were retrospectively analyzed based on their clinicopathological characteristics. Genetic analysis was performed using whole-exome sequencing and Sanger's sequencing. Data of the patients with IgA nephropathy and normal basement membrane (IgA-N) and variants in the local in-house database were used as controls. All candidate variants were assessed in silico. RESULTS: The clinical manifestations of patients with IgA-T were hematuria, proteinuria, and renal insufficiency. Histopathological analysis showed mild mesangial hyperplasia, focal segmental glomerulosclerosis, podocyte activation, and foot process fusion. Crescent was rarely seen. COL4A and/or podocyte cytoskeleton and mitochondria-related gene variants were detected in seven IgA-T patients. Three patients exhibited pathogenic variants of COL4A, including a new variant. All IgA-T and one IgA-N patient possessed ITGB4 and/or PLEC variants, but there was no corresponding genotype-phenotype relationship. Six patients possessed other podocyte cytoskeleton and mitochondria-related gene variants such as NPHS2, SRGAP1, MYO1E, MYO1C, WT1, and COQ9, which were first reported in patients with IgA-T and were not in controls. Altogether, there were no significant differences in the degrees of proteinuria, serum creatinine, and eGFR during the follow-up period of 5-10 years, but there was a significant difference in the degree of proteinuria between IgA-T patients with podocyte-related gene variants and IgA-N patients. In the IgA-T group, patients with podocyte-related gene variants seemed predisposed to progress than patients without those variants, with higher proteinuria and serum creatinine and reduced eGFR. CONCLUSION: Concurrent thin basement membrane nephropathy and/or heterozygous COL4A gene pathogenic variants do not necessarily predict the short-term progress of sporadic IgA nephropathy in adults. Predisposition factors for this disease progression should be considered for detecting the variants of COL4A and podocyte cytoskeleton and mitochondria-related genes simultaneously, which also manifests the complexity and heterogeneity of IgA nephropathy with concurrent thin basement membrane nephropathy.


Subject(s)
Glomerulonephritis, IGA , Podocytes , Humans , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/diagnosis , Hematuria , Podocytes/pathology , Retrospective Studies , Creatinine , Collagen Type IV/genetics , Basement Membrane/pathology , Proteinuria/pathology , Immunoglobulin A
19.
J Colloid Interface Sci ; 629(Pt A): 243-255, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36081205

ABSTRACT

SSZ-13 has been commercialized as a catalyst in diesel engines for the selectivity catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR), but the catalyst is facing the problem of poisoning. Herein, two well-designed catalysts, Cu-SSZ-13 and cerium (Ce) doped Cu-SSZ-13 are synthesized, and their tolerance to zinc (Zn) and phosphorus (P) poisoning alone and together are explored in detail. The research found that Zn and P poisoning alone leads to the destruction of Cu-SSZ-13 structure, resulting in the decline of denitration (de-NOx) performance following the mechanism dominated by Eley-Rideal (E-R). Surprisingly, it is found that zinc phosphate particles are formed at inactive sites on the surface of Cu-SSZ-13 in the presence of Zn and P together, which protects the active sites, enhances the adsorption of nitric oxide. As a result, the excellent de-NOx performance of Cu-SSZ-13 is well maintained following the dual mechanism of E-R and Langmuir-Hinshelwood (L-H). In addition, the introduction of Ce stabilizes the active sites, so as to improve the de-NOx performance and the poisoning tolerance of Cu-SSZ-13. This work deeply analyzes the reasons of Zn and P poisoning and the positive effect of Ce on Cu-SSZ-13, which provides ideas for improving the poisoning tolerance of Cu-SSZ-13 and promotes the further application.

20.
Environ Sci Pollut Res Int ; 30(4): 9401-9415, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36053419

ABSTRACT

Non-precious metal catalysts with good soot catalytic properties and a low cost have great potential for application in diesel particulate filters (DPF). In this study, we compared the effects of DPF supported by Cs2V4O11 (Cs-V-based) non-precious metal catalysts and conventional Pt-Pd-based precious metal catalysts on the performance of a non-road diesel engine. Furthermore, the effects of on-wall coating and in-wall coating of Cs-V-based catalysts on DPF performance were also investigated. The results indicated that the particulate emissions from DPF with Cs-V-based catalysts were reduced slightly less than that with Pt-Pd-based catalysts; however, the particle number (PN) and particulate matter (PM) emissions were still reduced by 94.4% and 91.7%, respectively, meeting the non-road China IV limits under the non-road steady cycle (NRSC). In addition, CO, HC, and NO can also be slightly oxidized by the non-precious metal catalysts. On the other hand, the DPF with in-wall coating induced comparatively higher gaseous substances and particulate emissions and caused a higher exhaust back pressure (EBP), which was 9.6% higher than the on-wall coating under NRSC, negatively affecting engine performance. Additionally, the geometric mean diameter (GMD) for the DPF with in-wall coating was only 33.3 nm because of the large emission proportion of nuclear mode particles.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Particulate Matter/analysis , Dust
SELECTION OF CITATIONS
SEARCH DETAIL