Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Neurosurg Rev ; 47(1): 318, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995460

ABSTRACT

Studies comparing different treatment methods in patients with middle cerebral artery (MCA) aneurysms in different subgroups of onset symptoms are lacking. It is necessary to explore the safety and efficacy of open surgical treatment and endovascular therapy in patients with MCA aneurysms in a specific population. This study aimed to compare microsurgical clipping versus endovascular therapy regarding complication rates and outcomes in patients with MCA aneurysms presenting with neurological ischemic symptoms. This was a retrospective cohort study in which 9656 patients with intracranial aneurysms were screened between January 2014 and July 2022. Further, 130 eligible patients were enrolled. The primary outcome was the incidence of serious adverse events (SAEs) within 30 days of treatment, whereas secondary outcomes included postprocedural target vessel-related stroke, disabling stroke or death, mortality, and aneurysm occlusion rate. Among the 130 included patients, 45 were treated with endovascular therapy and 85 with microsurgical clipping. The primary outcome of the incidence of SAEs within 30 days of treatment was significantly higher in the clipping group [clipping: 23.5%(20/85) vs endovascular: 8.9%(4/45), adjusted OR:4.05, 95% CI:1.20-13.70; P = 0.024]. The incidence of any neurological complications related to the treatment was significantly higher in the clipping group [clipping:32.9%(28/85) vs endovascular:15.6%(7/45); adjusted OR:3.49, 95%CI:1.18-10.26; P = 0.023]. Postprocedural target vessel-related stroke, disabling stroke or death, mortality rate, and complete occlusion rate did not differ significantly between the two groups. Endovascular therapy seemed to be safer in treating patients with MCA aneurysms presenting with neurological ischemic symptoms compared with microsurgical clipping, with a significantly lower incidence of SAEs within 30 days of treatment and any neurological complications related to the treatment during follow-up.


Subject(s)
Endovascular Procedures , Intracranial Aneurysm , Microsurgery , Humans , Intracranial Aneurysm/surgery , Intracranial Aneurysm/complications , Male , Female , Endovascular Procedures/methods , Middle Aged , Microsurgery/methods , Adult , Retrospective Studies , Aged , Treatment Outcome , Brain Ischemia/surgery , Brain Ischemia/etiology , Neurosurgical Procedures/methods , Surgical Instruments , Postoperative Complications/epidemiology , Middle Cerebral Artery/surgery
2.
Dalton Trans ; 53(24): 10055-10059, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38832528

ABSTRACT

A novel coordination polymer CuCl-Pyhc was successfully synthesized, which can catalyze efficient and selective oxidation of C(sp3)-H bonds under mild conditions, exhibiting exceptional stability and remarkable recyclability. Furthermore, CuCl-Pyhc can mimic natural monooxygenases and activate oxygen into singlet oxygen (1O2).

3.
Int J Neurosci ; : 1-7, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557439

ABSTRACT

OBJECTIVE: This study aims to analyze key factors affecting the surgical outcome of children with intractable epilepsy caused by focal cortical dysplasia, providing more effective clinical guidance. METHODS: We conducted a study from March 2019 to February 2021, selecting 80 children with intractable epilepsy caused by focal cortical dysplasia who underwent surgical treatment. Comprehensive inclusion criteria were met. We collected general information and treatment outcomes before and after surgery, with a two-year postoperative follow-up. Patients were categorized into good and poor outcome groups based on outcomes. Various factors including pathological types, age of onset, seizure frequency, and extent of resection were selected as variables. Logistic regression analysis investigated predictive factors. RESULTS: Engel class I included 53 cases, class II had 16 cases, class III had 9 cases, and class IV had 2 cases. Thus, 53 cases were in the good outcome group, and 27 in the poor outcome group. General data showed no significant differences between the groups (p > 0.05). Single-factor analysis revealed statistically significant risk factors: FCD classification, MRI results, age of onset, seizure frequency, and extent of resection (p < 0.05). Logistic multifactor analysis indicated seizure frequency. acute postoperative seizures (APSO) and extent of resection as independent influencing factors (p < 0.05). CONCLUSION: Seizure frequency, extent of resection, and APSO are key independent factors for surgical outcome in children with intractable epilepsy caused by focal cortical dysplasia. Clinicians should consider these factors when planning treatment to improve success rates and outcome, enhancing quality of life for affected children.

4.
ACS Biomater Sci Eng ; 10(5): 3173-3187, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38605468

ABSTRACT

The application of bioengineering techniques for achieving bone regeneration in the oral environment is an increasingly prominent field. However, the clinical use of synthetic materials carries certain risks. The liquid phase of concentrated growth factor (LPCGF), as a biologically derived material, exhibits superior biocompatibility. In this study, LPCGF was employed as a tissue engineering scaffold, hosting dental follicle cells (DFCs) to facilitate bone regeneration. Both in vivo and in vitro experimental results demonstrate that this platform significantly enhances the expression of osteogenic markers in DFCs, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and type I collagen (Col1a1). Simultaneously, it reduces the expression of inflammation-related genes, particularly interleukin-6 (IL-6) and interleukin-8 (IL-8), thereby alleviating the negative impact of the inflammatory microenvironment on DFCs. Further investigation into potential mechanisms reveals that this process is regulated over time by the WNT pathway. Our research results demonstrate that LPCGF, with its favorable physical characteristics, holds great potential as a scaffold. It can effectively carry DFCs, thereby providing an optimal initial environment for bone regeneration. Furthermore, LPCGF endeavors to closely mimic the mechanisms of bone healing post-trauma to facilitate bone formation. This offers new perspectives and insights into bone regeneration engineering.


Subject(s)
Bone Regeneration , Dental Sac , Intercellular Signaling Peptides and Proteins , Tissue Scaffolds , Bone Regeneration/drug effects , Dental Sac/cytology , Dental Sac/metabolism , Tissue Scaffolds/chemistry , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Stem Cells/metabolism , Stem Cells/cytology , Osteogenesis , Humans , Tissue Engineering/methods
5.
Carbohydr Polym ; 333: 121991, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494240

ABSTRACT

Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.


Subject(s)
Burns , Chitosan , Polyphenols , Humans , Antioxidants/pharmacology , Burns/drug therapy , Biocompatible Materials , Hydrogels/pharmacology , Neovascularization, Pathologic , Wound Healing , Anti-Bacterial Agents
6.
Bioact Mater ; 35: 362-381, 2024 May.
Article in English | MEDLINE | ID: mdl-38379697

ABSTRACT

Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium. More importantly, inducing implanted cardiomyocytes (CMs) adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair. Herein, a functional Cig/(TA-Cu) CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid (TA)-chelated Cu2+ (TA-Cu complex) via a green method. This CP possessed microstructural anisotropy, electrical conductivity and mechanical properties similar to natural myocardium, which could promote elongation, orientation, maturation, and functionalization of CMs. Besides, the Cig/(TA-Cu) CP could efficiently scavenge reactive oxygen species, reduce CM apoptosis, ultimately facilitating myocardial electrical integration, promoting vascular regeneration and improving cardiac function. Together, our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.

7.
J Environ Manage ; 354: 120271, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354610

ABSTRACT

How to use digitalization to support the green transformation of organizations has drawn much attention based on the rapid development of digitalization. However, digital transformation (DT) may be hindered by the "IT productivity paradox." Exploring the influence of DT on green innovation, we analyze panel data encompassing A-share listed companies in Shanghai and Shenzhen spanning the period from 2010 to 2018. It tests the DT's non-linear impact, employing a random-forest and mediation effect models. The results reveal that (i) DT can promote green innovation; (ii) regarding heterogeneity, the promotion effect is mainly manifested in enterprises in non-state-owned and highly competitive industries; (iii) based on mechanism testing, DT relies on two routes to encourage green innovation: improving environmental information disclosure and reducing environmental uncertainty; and (iv) random-forest analysis shows that DT exhibits an inverted U-shaped non-linear effect on green innovation, including the "IT productivity paradox." This study enhances the existing discourse on DT and green innovation by furnishing empirical substantiation for the non-linear influence exerted by DT on green innovation. Furthermore, it imparts insights into the mechanisms and contextual limitations governing this association.


Subject(s)
Disclosure , Machine Learning , China , Industry , Uncertainty
8.
J Xray Sci Technol ; 32(3): 513-528, 2024.
Article in English | MEDLINE | ID: mdl-38393883

ABSTRACT

OBJECTIVES: To evaluate the performance of deep learning image reconstruction (DLIR) algorithm in dual-energy spectral CT (DEsCT) as a function of radiation dose and image energy level, in comparison with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction-V (ASIR-V) algorithms. METHODS: An ACR464 phantom was scanned with DEsCT at four dose levels (3.5 mGy, 5 mGy, 7.5 mGy, and 10 mGy). Virtual monochromatic images were reconstructed at five energy levels (40 keV, 50 keV, 68 keV, 74 keV, and 140 keV) using FBP, 50% and 100% ASIR-V, DLIR at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) settings. The noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed and compared among reconstructions. RESULTS: NPS area and noise increased as keV decreased, with DLIR having slower increase than FBP and ASIR-V, and DLIR-H having the lowest values. DLIR had the best 40 keV/140 keV noise ratio at various energy levels, DLIR showed higher TTF (50%) than ASIR-V for all materials, especially for the soft tissue-like polystyrene insert, and DLIR-M and DLIR-H provided higher d' than DLIR-L, ASIR-V and FBP in all dose and energy levels. As keV increases, d' increased for acrylic insert, and d' of the 50 keV DLIR-M and DLIR-H images at 3.5 mGy (7.39 and 8.79, respectively) were higher than that (7.20) of the 50 keV ASIR-V50% images at 10 mGy. CONCLUSIONS: DLIR provides better noise containment for low keV images in DEsCT and higher TTF(50%) for the polystyrene insert over ASIR-V. DLIR-H has the lowest image noise and highest detectability in all dose and energy levels. DEsCT 50 keV images with DLIR-M and DLIR-H show potential for 65% dose reduction over ASIR-V50% withhigher d'.


Subject(s)
Algorithms , Deep Learning , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Radiation Dosage , Signal-To-Noise Ratio , Radiography, Dual-Energy Scanned Projection/methods , Humans
9.
J Chromatogr A ; 1716: 464626, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38232637

ABSTRACT

Herein, a spherical covalent organic framework COF TAPB-DMTP was facilely synthesized from 2,5-dimethoxyterephthalaldehyde (DMTP) and 1,3,5-tri-(4-aminophenyl)benzene (TAPB) as monomers. COF TAPB-DMTP with regular mesoporous and excellent mass transfer ability was first introduced into the capillary and immobilized on the inner wall of the capillary through a simple in situ growth method. Through various characterization results, COF TAPB-DMTP was successfully prepared and modified onto the capillary inner wall. The separation performance and potential of COF TAPB-DMTP modified capillary column was explored. The new developed COF modified column achieved a highly efficiency and selective separation between analytes with different properties, including halogeno benzenes, alkylbenzenes, phenols and sulfonamides. Satisfactory stability and reproducibility were observed on COF TAPB-DMTP modified columns. The intraday, interday and three batch columns relative standard deviations were all less than 1.85 % for the retention time. The separation performance of prepared column has no significant change after 90 continuous runs. Additionally, the COF TAPB-DMTP modified capillary column was successfully used for separation and detection of triazole antifungal drugs in human plasma, and the recoveries of three antifungal drugs (fluconazole, isavuconazole and posaconazole) in spiked samples were in the range of 98.6-100.8 %, 92.4-102.1 % and 99.9-107.5 %, respectively. This self-made column showed excellent application potential in chromatography separation science.


Subject(s)
Benzamidines , Capillary Electrochromatography , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Capillary Electrochromatography/methods , Reproducibility of Results , Temperature , Antifungal Agents
10.
J Mech Behav Biomed Mater ; 151: 106387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246092

ABSTRACT

Comprehensive characterization of the transversely isotropic mechanical properties of long bones along both the longitudinal and circumferential gradients is crucial for developing accurate mathematical models and studying bone biomechanics. In addition, mechanical testing to derive elastic, plastic, and failure properties of bones is essential for modeling plastic deformation and failure of bones. To achieve these, we machined a total of 336 cortical specimens, including 168 transverse and 168 longitudinal specimens, from four different quadrants of seven different sections of 3 bovine femurs. We conducted three-point bending tests of these specimens at a loading rate of 0.02 mm/s. Young's modulus, yield stress, tangential modulus, and effective plastic strain for each specimen were derived from correction equations based on classical beam theory. Our statistical analysis reveals that the longitudinal gradient has a significant effect on the Young's modulus, yield stress, and tangential modulus of both longitudinal and transverse specimens, whereas the circumferential gradient significantly influences the Young's modulus, yield stress, and tangential modulus of transverse specimens only. The differences in Young's modulus and yield stress between longitudinal specimens from different sections are greater than 40%, whereas those between transverse specimens are approximately 30%. The Young's modulus and yield stress of transverse specimens in the anterior quadrant were 18.81%/15.46% and 18.34%/14.88% higher than those in the posterior and lateral quadrants, respectively. There is no significant interaction between the longitudinal gradient and the circumferential gradient. Considering the transverse isotropy, it is crucial to consider loading direction when investigating the impact of circumferential gradients in the anterior, lateral, medial, and posterior directions. Our findings indicate that the conventional assumption of homogeneity in simulating the cortical bone of long bones may have limitations, and researchers should consider the anatomical position and loading direction of femur specimens for precise prediction of mechanical responses.


Subject(s)
Bone and Bones , Cortical Bone , Animals , Cattle , Stress, Mechanical , Elastic Modulus/physiology , Femur/physiology , Biomechanical Phenomena
12.
BMC Med Imaging ; 23(1): 147, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784073

ABSTRACT

OBJECTIVES: This study aimed to develop and validate radiomics models on the basis of computed tomography (CT) and clinical features for the prediction of pulmonary metastases (MT) in patients with Ewing sarcoma (ES) within 2 years after diagnosis. MATERIALS AND METHODS: A total of 143 patients with a histopathological diagnosis of ES were enrolled in this study (114 in the training cohort and 29 in the validation cohort). The regions of interest (ROIs) were handcrafted along the boundary of each tumor on the CT and CT-enhanced (CTE) images, and radiomic features were extracted. Six different models were built, including three radiomics models (CT, CTE and ComB models) and three clinical-radiomics models (CT_clinical, CTE_clinical and ComB_clinical models). The area under the receiver operating characteristic curve (AUC), and accuracy were calculated to evaluate the different models, and DeLong test was used to compare the AUCs of the models. RESULTS: Among the clinical risk factors, the therapeutic method had significant differences between the MT and non-MT groups (P<0.01). The six models performed well in predicting pulmonary metastases in patients with ES, and the ComB model (AUC: 0.866/0.852 in training/validation cohort) achieved the highest AUC among the six models. However, no statistically significant difference was observed between the AUC of the models. CONCLUSIONS: In patients with ES, clinical-radiomics model created using radiomics signature and clinical features provided favorable ability and accuracy for pulmonary metastases prediction.


Subject(s)
Lung Neoplasms , Sarcoma, Ewing , Humans , Sarcoma, Ewing/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Area Under Curve , ROC Curve , Tomography, X-Ray Computed , Retrospective Studies
14.
Medicine (Baltimore) ; 102(33): e34815, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37603510

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is a multifactorial disease that is associated with nucleus pulposus (NP) apoptosis and extracellular matrix (ECM) degeneration and inflammation. Astragaloside IV (AS IV) has antioxidant, free radical scavenging, anti-inflammatory and anti-apoptosis effects. This study was to investigate whether AS IV could inhibit IL-1ß-mediated apoptosis of HNP cells and its possible signal transduction pathway. METHODS: Human nucleus pulposus cells (HNPCs) were stimulated with AS IV or LY294002 (PI3K inhibitor), followed by exposure to IL-1ß for 24 hours. CCK8, TUNEL analysis and flow cytometry, ELISA and Western blotting were used to analyze the effects of AS IV on cell proliferation, apoptosis, inflammation, ECM and PI3K/Akt pathway signaling path-related proteins in IL-1ß-induced HNPCs. RESULTS: Compared with IL-1ß-induced HNPCs, AS IV could improve the proliferation activity and the expressions of Collagen II, Aggrecan and Bcl-2 proteins, inhibit the apoptosis rate, inflammation and Bax and cleaved caspase-3 protein expression, and increase the activity of PI3K/Akt pathway. LY294002 attenuated the protective effect of AS IV against IL-1ß-induced HNPCs degeneration. CONCLUSION: AS IV can inhibit IL-1ß-induced HNPCs apoptosis inflammation and ECM degeneration by activating PI3K/Akt signaling pathway, which can be an effective drug to reduce disc degeneration.


Subject(s)
Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Humans , Proto-Oncogene Proteins c-akt , Signal Transduction
15.
J Chromatogr A ; 1705: 464205, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37442070

ABSTRACT

A new kind of covalent organic framework (COF) was first utilized as an stationary phase for open-tubular electrochromatography (OT-CEC) by in situ synthesis immobilized method at room temperature. On the basis of our previous work, 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (TZ) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) were employed as building blocks for the synthesis of COF TZ-BPTA. The coated capillary and COF TZ-BPTA were characterized by scanning electron microscopy (SEM). Then, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were also applied to characterize COF TZ-BPTA and the modified column. In SEM, it can be seen that COF TZ-BPTA was the spherical shape and the modified capillary was covered with globular particles equably. The COF TZ-BPTA coated column exhibited good separation resolution and efficiency towards two antiepileptic drugs and other kinds of small organic molecules involving alkylbenzene, sulfonamides, polycyclic aromatic hydrocarbon (PAH), parabens, amino acids and herbicides. The maximum column efficiency was over 2.8 × 105 plates·m-1. In addition, the precisions (RSDs) of the retention times for the alkylbenzenes of intra-day runs (n = 3), inter-day runs (n = 3) and column-to-column runs (n = 3) were all less than 1.70% and separation performance was without obvious change within 100 times run. In addition, the real sample was tested on COF TZ-BPTA coated column. Hence, COF TZ-BPTA showed great potential in the separation domain.


Subject(s)
Capillary Electrochromatography , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Capillary Electrochromatography/methods , Spectroscopy, Fourier Transform Infrared , Amino Acids , Microscopy, Electron, Scanning
16.
J Chromatogr A ; 1705: 464226, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37487300

ABSTRACT

The determination of blood concentration of non-steroidal anti-inflammatory drugs (NSAIDs) is highly desired in clinical practice. In this work, three amino bearing metal-organic frameworks (amino-MOFs) coated cotton fibers were prepared using a facile cysteine-triggered in situ growth strategy and proposed as in-tip solid-phase microextraction (in-SPME) adsorbents for efficient extraction of non-steroidal anti-inflammatory drugs from human plasma. The self-made adsorbents exhibited satisfactory extraction performance toward three NSAIDs including diclofenac sodium, ketoprofen and flurbiprofen. Under the optimized conditions, the established method exhibited satisfactory enrichment performance, low limits of detection and excellent extraction efficiency. Good reproducibility, wide linear range, excellent linearity and satisfactory sensitivity were obtained in the experiment. The method was also used for the enrichment and determination of NSAIDs in human plasma samples. Good recoveries were obtained, ranging from 66.5% to 98.9% with relative standard deviations less than 6.62%. The good performance of amino-MOFs was due to the synergistic effects arising from grafted charged amino groups within ordered pores of suitable size, leading to strong affinity towards guest molecules. Electrostatic interaction, hydrogen bond and π-π interaction played a vital role in the extraction of NSAIDs. This report indicated the potential of amino-MOFs as efficient adsorbents for the determination of NSAIDs from human plasma.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Reproducibility of Results , Cotton Fiber , Chromatography, High Pressure Liquid/methods , Anti-Inflammatory Agents, Non-Steroidal , Solid Phase Extraction/methods , Solid Phase Microextraction/methods , Limit of Detection
17.
Discov Oncol ; 14(1): 123, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37395858

ABSTRACT

BACKGROUND: Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by poor prognosis, aggressiveness, and poor survival. Mucin 13 (MUC13) is a member of the membrane-bound mucin and located on chromosome 3q21.2 and consists of α and ß subunits. It has been found that MUC13 is overexpressed in a variety of tumor cells and acts a vital role in the invasiveness and malignant progression of several types of tumors. However, the role and regulatory mechanism of MUC13 in the progression of esophageal cancer remain unclear. METHODS: The expression level of MUC13 was detected in 15 esophageal cancer tissues and 15 pairs of adjacent nontumor tissues by immunohistochemistry (IHC). In addition, the expression of MUC13 mRNA level in human esophageal cancer cell lines (EC9706 and ECA109 and TE-1) was measured by qRT-PCR. In vitro, after silencing MUC13 with lentiviral interference technology, CCK8 assay, clone formation assay, and flow cytometry were applied to investigate the proliferation activity, clone formation ability and anti-apoptosis ability of EC9706 and ECA109 cells. The tumor xenograft growth assay was used to confirm the influence of MUC13 knockdown on the growth of esophageal tumors in vivo. The qRT-PCR assay and western blot experiments were taken to study the mechanism of MUC13 regulating the proproliferation and antiapoptotic of esophageal cancer. RESULTS: The results showed that MUC13 was overexpressed in esophageal cancer tissues and cell lines (EC9706 and ECA109 and TE-1), especially in EC9706 and ECA109 cells, but low expressed in human esophageal epithelial cell line (HEEC). Next, silencing MUC13 inhibits proliferation, blocks cell cycle progression, and promotes cell apoptosis in vitro, and restrains the growth of esophageal cancer tissues in vivo. Finally, MUC13 affects the proproliferation and antiapoptotic by regulating the expression of GLANT14, MUC3A, MUC1, MUC12, and MUC4 that closely related to O-glycan process. CONCLUSIONS: This study proved that MUC13 is an important molecule that regulates the O-glycan process and then affects the progress of esophageal cancer. MUC13 may be a novel therapeutic target for patients with esophageal cancer.

18.
J Sep Sci ; 46(16): e2300138, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269198

ABSTRACT

Fluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Based on strong hydrophobic interaction and fluorine-fluorine interaction provided by fluorinated covalent-organic polymer coating layer, the modified column showed powerful separation selectivity toward hydrophobic compounds, organic fluorides, and fluorinated pesticides. Additionally, the fluorinated covalent-organic polymer with good porosity and regular shape was uniformly and tightly coated on the capillary inner wall. The obtained highest column efficiency could reach up to 1.2 × 105 plates⋅m-1 for fluorophenol. The loading capacity of the modified column can reach 141 pmol for trifluorotoluene. Besides, the relative standard deviations of retention times for intraday run (n = 5), interday run (n = 3), and between columns (n = 3) were all less than 2.55%. Significantly, this novel fluorinated material-based stationary phase shows great application potential in fluorides analysis.

19.
Micromachines (Basel) ; 14(5)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241674

ABSTRACT

It is of great significance for structural design and engineering evaluation to obtain the elastic-plastic parameters of materials. The inverse estimation of elastic-plastic parameters of materials based on nanoindentation technology has been applied in many pieces of research, but it has proved to be difficult to determine the elastic-plastic properties of materials by only using a single indentation curve. A new optimal inversion strategy based on a spherical indentation curve was proposed to obtain the elastoplastic parameters (the Young's modulus E, yield strength σy, and hardening exponent n) of materials in this study. A high-precision finite element model of indentation with a spherical indenter (radius R = 20 µm) was established, and the relationship between the three parameters and indentation response was analyzed using the design of experiment (DOE) method. The well-posed problem of inverse estimation under different maximum indentation depths (hmax1 = 0.06 R, hmax2 = 0.1 R, hmax3 = 0.2 R, hmax4 = 0.3 R) was explored based on numerical simulations. The results show that the unique solution with high accuracy can be obtained under different maximum press-in depths (the minimum error was within 0.2% and the maximum error was up to 1.5%). Next, the load-depth curves of Q355 were obtained by a cyclic loading nanoindentation experiment, and the elastic-plastic parameters of Q355 were determined by the proposed inverse-estimation strategy based on the average indentation load-depth curve. The results showed that the optimized load-depth curve was in good agreement with the experimental curve, and the optimized stress-strain curve was slightly different from the tensile test, and the obtained parameters were basically consistent with the existing research.

20.
Angew Chem Int Ed Engl ; 62(27): e202304197, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37133456

ABSTRACT

Large graphene-like molecules with four zigzag edges are ideal gain medium materials for organic near-infrared (NIR) lasers. However, synthesizing them becomes increasingly challenging as the molecular size increases. In this study, we introduce a new intramolecular radical-radical coupling approach and successfully synthesize two fused triangulene dimers (1 a/1 b) efficiently. X-ray crystallographic analysis of 1 a indicates that there is no intermolecular π-π stacking in the solid state. When the more soluble derivative 1 b is dispersed in polystyrene thin films, amplified spontaneous emission in the NIR region is observed. Using 1 b as the active gain material, we fabricate solution-processed distributed feedback lasers that exhibit a narrow emission linewidth at around 790 nm. The laser devices also exhibit low thresholds with high photostability. Our study provides a new synthetic strategy for extended nanographenes, which have diverse applications in electronics and photonics.

SELECTION OF CITATIONS
SEARCH DETAIL