Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Stroke Cerebrovasc Dis ; 33(8): 107779, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768666

ABSTRACT

INTRODUCTION: Cerebral ischemia (CI) induces a profound neuroinflammatory response, but the underlying molecular mechanism remains unclear. Exosomes from adipose-derived stem cells (ADSC-exos) have been found to play a crucial role in cell communication by transferring molecules including microRNAs (miRNAs), which have been shown to modulate the inflammatory response after CI and are viable molecular targets for altering brain function. The current study aimed to explore the contribution of ADSC-exosomal miR-21-5p to the neuroinflammation after CI. METHODS: The differentially expressed miR-21-5p in CI was screened based on literature search. The target mRNAs of miR-21-5p were predicted using online databases and verified by luciferase reporter assay. Then, BV2 cells were treated with hemin to simulate the inflammatory response after CI, and its animal model was induced using the MCAO method. Ischemia was evaluated in rats using 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining. ADSCs-exos were further isolated and identified by western blot analysis and transmission electron microscope. RESULTS: MiR-21-5p was significantly down-regulated in CI and alleviated neuropathic damage after CI by the PIK3R1/PI3K/AKT signaling axis. And miR-21-5p derived from ADSCs-exos alleviated neuroinflammation after CI via promoting microglial M2 polarization. CONCLUSION: We demonstrated that ADSC-exosomal miR-21-5p mitigated post-CI inflammatory response through the PIK3R1/PI3K/AKT signaling axis and could offer neuroprotection after CI through promoting polarization of M2 microglia.

2.
J Hepatocell Carcinoma ; 11: 693-705, 2024.
Article in English | MEDLINE | ID: mdl-38596594

ABSTRACT

Purpose: This study aims to establish a prognostic nomogram for patients who underwent transarterial chemoembolization (TACE) for recurrent hepatocellular carcinoma (HCC) after hepatectomy. Patients and Methods: Patients who underwent TACE for recurrent early- and middle-stage HCC after hepatectomy between 2009.01 and 2015.12 were included. Enrolled patients were randomly divided into training (n=345) and validation (n=173) cohorts according to a computer-generated randomized number. Independent factors for overall survival (OS) were determined and included in the nomogram based on the univariate and multivariate analyses of the training group. The nomogram was validated and compared to other prognostic models. Discriminative ability and predictive accuracy were determined using the Harrell C index (C-index), area under the receiver operating characteristic curve (AUROC), and calibration curve. Results: The final nomogram was established based on four parameters including resection-to-TACE time interval, recurrent tumor diameter, recurrent tumor number, and AFP level. The C-indexes of the nomogram for predicting OS were 0.67 (95% CI 0.63-0.70) and 0.71 (95% CI 0.68-0.74) in the training and validation cohort respectively. The AUROCs for predicting the 1-year, 2-year and 3-year OS based on the nomogram were also superior to those of the other models. The calibration curve for 3-year survival showed a high congruence between the predicted and actual survival probabilities. According to the scores calculated by the nomogram, patients were stratified into three subgroups: high-risk (scoring ≥53 points), middle-risk (scoring ≥26 and <53 points), and low-risk (scoring <26 points) subgroups with a median OS of 10.1 (95% CI 0.63-0.70), 20.3 (95% CI 17.5-22.5) and 47.0 (95% CI 34.2-59.8) months, respectively. Conclusion: The proposed nomogram served as a new tool to predict individual survival in patients who underwent TACE for recurrent HCC after hepatectomy, with favorable performance and discrimination. For high-risk patients, treatment should be optimized beyond TACE alone based on the nomogram.

3.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672447

ABSTRACT

Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.


Subject(s)
Escherichia coli , Phosphatidylserines , Phospholipase D , Calcium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Phosphatidylserines/biosynthesis , Phosphatidylserines/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism
4.
Aging (Albany NY) ; 16(8): 6852-6867, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38637126

ABSTRACT

BACKGROUND: Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS: GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS: The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS: The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.


Subject(s)
CD11b Antigen , Ischemic Stroke , Humans , Apoptosis/genetics , Databases, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Ischemic Stroke/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Interaction Maps/genetics , CD11b Antigen/genetics , CD11b Antigen/metabolism
5.
Acta Neurochir (Wien) ; 166(1): 153, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536487

ABSTRACT

BACKGROUND: Previously, we revealed noticeable dynamic fluctuations in syndecan-1 levels in the peripheral blood of post-stroke patients. We further investigated the clinical prognostic value of syndecan-1 as a biomarker of glycoprotein damage in patients with acute ischaemic stroke (AIS). METHODS: We examined 105 patients with acute large vessel occlusion in the anterior circulation, all of whom underwent mechanical thrombectomy (MT). Peripheral blood syndecan-1 levels were measured 1 day after MT, and patients were categorised into favourable and unfavourable prognostic groups based on the 90-day modified Rankin Scale (mRS) score. Additionally, we compared the clinical outcomes between groups with high and low syndecan-1 concentrations. RESULTS: The findings revealed a significantly lower syndecan-1 level in the group with an unfavourable prognosis compared to those with a favourable prognosis (p < 0.01). In the multivariable logistic regression analysis, lower syndecan-1 levels were identified as a predictor of unfavourable prognosis (odds ratio (OR) = 0.965, p = 0.001). Patients displaying low syndecan-1 expression in the peripheral blood (< 29.51 ng/mL) experienced a > twofold increase in the rates of unfavourable prognosis and mortality. CONCLUSIONS: Our study demonstrates that syndecan-1, as an emerging, easily detectable stroke biomarker, can predict the clinical outcomes of patients with AIS. After MT, low levels of syndecan-1 in the peripheral blood on the first day emerged as an independent risk factor for an unfavourable prognosis, suggesting that lower syndecan-1 levels might signify worse clinical presentation and outcomes in stroke patients undergoing this procedure.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Syndecan-1 , Humans , Biomarkers , Brain Ischemia/complications , Brain Ischemia/diagnosis , Brain Ischemia/surgery , Ischemic Stroke/complications , Ischemic Stroke/diagnosis , Ischemic Stroke/surgery , Prognosis , Retrospective Studies , Stroke/diagnosis , Stroke/surgery , Stroke/etiology , Syndecan-1/blood , Syndecan-1/chemistry , Thrombectomy/adverse effects , Treatment Outcome
6.
Molecules ; 29(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474657

ABSTRACT

DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics.


Subject(s)
Escherichia coli , Nucleic Acid Amplification Techniques , Humans , Taq Polymerase/metabolism , Escherichia coli/metabolism , Polymerase Chain Reaction/methods , DNA/metabolism , Recombinant Proteins/metabolism
7.
Cell Rep ; 43(3): 113877, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421869

ABSTRACT

Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Proteomics , Liver Neoplasms/drug therapy , Combined Modality Therapy
8.
Article in English | MEDLINE | ID: mdl-38165592

ABSTRACT

Spinal cord injury (SCI) is a highly debilitating disorder of the central nervous system that can severely impact an affected patient's quality of life. This study aimed to examine how adipose-derived mesenchymal stem cell exosomes (ADSC-exos) can be used to treat spinal cord injury. We analysed differentially expressed mRNAs in SCI using bioinformatics data, gene expression profiles in inflammatory cell models, RT-qPCR and WB. Apoptosis was detected with flow cytometry. Starbase provides the control mechanism for FDFT1. Target interactions were detected with dual-luciferase reporter and RIP assays. Exosomes were isolated from adipose tissue-derived mesenchymal stem cells and subsequently characterized with western blot analysis, transmission electron microscopy and nanoparticle tracking analysis. By analysing the GSE102964 database, we found that FDFT1 was significantly downregulated as SCI progressed. Overexpression of FDFT1 can significantly reverse the inflammatory response and apoptosis of BV2 cells induced by hemin. Mechanically, ADSC-exos can affect the expression of FDFT1 through the ceRNA mechanism mediated by LRRC75A-AS1 and in an RBP-dependent manner mediated by IGF2BP2. The overexpression of LRRC75A-AS1 significantly enhances BV2 apoptosis and can be reversed by FDFT1 knockdown. ADSC-exos LRRC75A-AS1 inhibits inflammation and reduces SCI by increasing the expression and stability of FDFT1 mRNA in a ceRNA and RBP-dependent manner.

9.
Article in English | MEDLINE | ID: mdl-38252207

ABSTRACT

As the principal active component of bee venom, melittin has an anti-cancer effect in different cancers. This study was aimed to investigate the effect of melittin in glioma and explore whether F2RL1 is closely involved in glioblastoma cells proliferation. TCGA and GES databases were used to evaluate the role of F2RL1 in gliomas. The U251 cells were divided into a control lentivirus + PBS group (NC-PBS), F2RL1 intervention lentivirus + PBS group (KD-PBS), control lentivirus + melittin group (NC-melittin), and F2RL1 intervention lentivirus + melittin group (KD-melittin). Cell proliferation was detected by MTT and EDU staining assays. The apoptosis rate was assessed by flow cytometry. Expressions of genes related to apoptosis, cycle arrest, migration, and invasion were detected by qRT-PCR. Cellular LDH concentrations were detected by ELISA. The subcutaneous tumor volume of nude mice was analyzed by xenograft method. F2RL1 was significantly overexpressed in glioma tissues and were reduced in the melittin-treated group compared to the blank group. F2RL1 knockdown and melittin alone or in combination increased the proportion of cells in the G1-phase, and the combination was more pronounced. The KD-melittin group showed a decrease in the number of viable cells at 24, 48, 72, and 96 h compared to the NC-PBS group. The number of cell migration and invasion was decreased in the KD-melittin group compared to the other groups. Moreover, the genes related to cell cycle arrest and apoptosis were significantly changed in the KD-melittin group. At weeks 4, 5, and 6, the tumor volume in the KD-melittin group was smaller than that in the KD-PBS group and NC-melittin group. Interference with the target gene F2RL1 inhibited the proliferation of glioma U251 cells, and melittin treatment inhibited the proliferation of glioma U251 cells. Melittin inhibited the proliferation of glioma U251 cells by suppressing the expression of target gene F2RL1.

10.
Biochem Genet ; 62(1): 468-484, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37378701

ABSTRACT

Family history of hypertension, smoking, diabetes and alcohol consumption and atherosclerotic plaque were identified as common risk factors in IS. We aimed at investigating the relationship between Thymidylate Synthase (TS) gene polymorphisms and ischemic stroke (IS).This case-control research selected and genotyped three single nucleotide polymorphisms (SNPs)of TS( rs699517, rs2790, and rs151264360) with Sanger sequencing in Chinese Han population. We also adopted logistic regression analysis in genetic models for calculating odds ratios and 95% confidence intervals. Genotype-Tissue Expression(GTEx) database analyzed the tissue-specific expression and TS polymorphisms. The ischemic stroke patients showed higher low-density lipoprotein cholesterol and total homocysteine (tHcy). It was found that patients with the TT genotype of rs699517 and GG genotype of rs2790 had larger degrees of tHcy than those with CC + CT genotypes and AA + AG genotypes, respectively. The genotype distribution of the three SNPs did not deviate from Hardy-Weinberg equilibrium (HWE). Haplotype analysis showed that T-G-del was the major haplotype in IS, and C-A-ins was the major haplotype in controls. GTEx database indicated that the rs699517 and rs2790 increased the expression of TS in healthy human and associated with TS expression level in a single tissue. In conclusion: This study has shown that TS rs699517 and rs2790 were significantly related to ischemic stroke patients.


Subject(s)
Ischemic Stroke , Stroke , Humans , Thymidylate Synthase/genetics , Ischemic Stroke/genetics , Ischemic Stroke/complications , Stroke/genetics , Stroke/complications , Polymorphism, Single Nucleotide , Genotype , China , Genetic Predisposition to Disease , Case-Control Studies , Gene Frequency
11.
Int Immunopharmacol ; 127: 111310, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38103409

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) can cause neuronal apoptosis and lead to irreversible brain injury. Numerous lncRNAs have been reported to play important roles in CIRI, but it is unclear whether these lncRNAs can function through exosomes. METHODS: In this study, we utilized the middle cerebral artery occlusion/reperfusion (MCAO/R) animal model and the oxygen-glucose deprivation/ reoxygenation (OGD/R) cell model. RNA sequencing was performed to screen for differentially expressed lncRNAs in M2 microglia-derived exosomes (M2-Exos). RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation and ubiquitination assays were used to explore the molecular mechanism of OIP5-AS1 in alleviating CIRI. RESULTS: M2-Exos could alleviate nerve injury and pyroptosis after CIRI in vitro and in vivo. OIP5-AS1 was found to be significantly up-regulated in M2-Exos and down-regulated in OGD/R neurons, MCAO/R mice and ischemic stroke patients. In MCAO/R mice, OIP5-AS1 could reduce cerebral infarct size, cerebral edema and mNSS scores, and inhibit the expression levels of pyroptosis-related proteins in brain tissue. TXNIP was confirmed to be a reliable binding protein of OIP5-AS1. OIP5-AS1 overexpression significantly attenuated MCAO/R-induced upregulation of TXNIP at the protein level, but not at the mRNA level. OIP5-AS1 promoted the TXNIP degradation process and increased the ubiquitination of TXNIP. ITCH could bind to TXNIP. ITCH overexpression or knockdown did not alter the mRNA level of TXNIP, but negatively regulated TXNIP expression at the protein level. ITCH accelerated the degradation and ubiquitination of TXNIP, which could be attenuated by OIP5-AS1 knockdown. OIP5-AS1 could improve neuronal damage and inhibit neuronal pyroptosis through TXNIP. CONCLUSIONS: M2-Exo-derived OIP5-AS1 can induce TXNIP ubiquitination and degradation by recruiting ITCH, negatively regulate TXNIP protein stability, inhibit neuronal pyroptosis, and attenuate CIRI.


Subject(s)
Brain Ischemia , MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , Animals , Humans , Mice , Brain Ischemia/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Infarction, Middle Cerebral Artery/metabolism , MicroRNAs/genetics , Neurons/metabolism , Pyroptosis , Reperfusion Injury/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism
12.
Article in English | MEDLINE | ID: mdl-37957902

ABSTRACT

BACKGROUND: Oxidative stress and endoplasmic reticulum stress are important components of the cellular stress process, which plays a critical role in tumor initiation and progression. METHODS: First, the correlation between oxidative stress and endoplasmic reticulum stress was detected in 68 human hepatocellular carcinoma (HCC) tissue microarray samples by immunohistochemistry. Differentially expressed oxidative stress- and endoplasmic reticulum stressrelated genes (OESGs) then were screened in HCC. Next, an OESGs prognostic signature was constructed for HCC in the training cohort (TCGA-LIHC from The Cancer Genome Atlas), by least absolute shrinkage and selection operator Cox and stepwise Cox regression analyses, and was verified in the external cohort (GSE14520 from the Gene Expression Omnibus). The MCP counter was employed to evaluate immune cell infiltration. The C-index was used to evaluate the predictive power of prognostic signature. Finally, a prognostic nomogram model was constructed to predict the survival probability of patients with HCC based on the results of Cox regression analysis. RESULTS: We demonstrated a positive correlation between oxidative stress and ER stress in human HCC samples. We then identified five OESGs as a prognostic signature consisting of IL18RAP, ECT2, PPARGC1A, STC2, and NQO1 for HCC. Related risk scores correlated with tumor stage, grade, and response to transcatheter arterial chemoembolization therapy, and the higher risk score group had less T cells, CD8+ T cells, cytotoxic lymphocytes and natural killer cell infiltration. The C-index of our OESGs prognostic signature was superior to four previously published signatures. Furthermore, we developed a nomogram based on the OESGs prognostic signature and clinical parameters for patients with HCC that is an effective quantitative analysis tool to predict patient survival. CONCLUSION: The OESGs signature showed excellent performance in predicting survival and therapeutic responses for patients with HCC.

13.
Hepatology ; 77(3): 745-759, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35243663

ABSTRACT

BACKGROUND AND AIMS: IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application. APPROACH AND RESULTS: TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC. CONCLUSIONS: Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.


Subject(s)
B-Lymphocytes, Regulatory , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , 5-Methylcytosine , B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes, Regulatory/pathology , Carcinoma, Hepatocellular/pathology , Interleukin-10 , Liver Neoplasms/pathology , Tumor Microenvironment
14.
Front Cell Infect Microbiol ; 13: 1296554, 2023.
Article in English | MEDLINE | ID: mdl-38282614

ABSTRACT

Background: The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research. Methods: We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients. Results: Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques. Conclusion: In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.


Subject(s)
Gastrointestinal Microbiome , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/pathology , Gastrointestinal Microbiome/genetics , DNA, Bacterial/genetics , Carotid Arteries/microbiology , Carotid Arteries/pathology , Bacteria/genetics
15.
J Oncol ; 2022: 5939158, 2022.
Article in English | MEDLINE | ID: mdl-36052285

ABSTRACT

Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with a high incidence and poor prognosis. Activation of the RAS pathway promotes progression and metastasis of osteosarcoma. RAS has been studied in many different tumors; however, the prognostic value of RAS-associated genes in OS remains unclear. On this basis, we investigated the RAS-related gene signature and explored the intrinsic biological features of OS. Methods: We obtained RNA transcriptome sequencing data and clinical information of osteosarcoma patients from the TARGET database. RAS pathway-related genes were obtained from the KEGG pathway database. Molecular subgroups and risk models were developed using consensus clustering and least absolute shrinkage and selection operator (LASSO) regression, respectively. ESTIMATE algorithm and ssGSEA analysis were used to assess the tumor microenvironment and immune penetrance between the two groups. A comprehensive review of gene ontology (GO) and KEGG analyses revealed inherent biological functional differences between the two groups. Results: The consistent clustering showed stratification of osteosarcoma patients into two subtypes based on RAS-associated genes and provided a robust prediction of prognosis. A risk model further confirmed that RAS-related genes are the best prognostic indicators for OS patients. GO analysis showed that GDP/GTP binding, focal adhesion, cytoskeletal motor activity, and cell-matrix junctions were associated with the RAS-related model group. Furthermore, RAS signaling in osteosarcoma based on KEGG analysis was significantly associated with cancer progression, with immune function and tumor microenvironment particularly affected. Conclusion: We constructed a prognostic model founded on RAS-related gene and demonstrated its predictive ability. Then, furtherly exploration of the molecular mechanisms and immune characteristics proved the role of RAS-related gene in the dysregulation in OS.

16.
Microbiol Spectr ; 10(5): e0098322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36173308

ABSTRACT

Microbiota is implicated in hepatocellular carcinoma (HCC). The spectrum of intratumoral microbiota associated with HCC progression remains elusive. Fluorescence in situ hybridization revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. Viable anaerobic or aerobic bacteria were recovered in HCC tissues by fresh tissue culture. We performed a comprehensive DNA sequencing of bacterial 16S rRNA genes in 156 samples from 28 normal liver, 64 peritumoral, and 64 HCC tissues, and the DNA sequencing yielded 4.2 million high-quality reads. Both alpha and beta diversity in peritumor and HCC microbiota were increased compared to normal controls. The most predominant phyla in HCC were Patescibacteria, Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota. phyla of Proteobacteria, Firmicutes, and Actinobacteriota, and classes of Bacilli and Actinobacteria, were consistently enriched in peritumor and HCC tissues, while Gammaproteobacteria was especially abundant in HCC tissues compared to normal controls. Streptococcaceae and Lactococcus were the marker taxa of HCC cirrhosis. The Staphylococcus branch and Caulobacter branch were selectively enriched in HBV-negative HCCs. The abundance of Proteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteriota, and Saccharimonadia were associated with the clinicopathological features of HCC patients. The inferred functions of different taxa were changed between the microbiota of normal liver and peritumor/HCC. Random forest machine learning achieved great discriminative performance in HCC prediction (area under the curve [AUC] = 1.00 in the training cohort, AUC = 0.950 for top five class signature, and AUC = 0.943 for the top 50 operational taxonomy units [OTUs] in the validation cohort). Our analysis highlights the complexity and diversity of the liver and HCC microbiota and established a specific intratumoral microbial signature for the potential prediction of HCC. IMPORTANCE Gut microbiome is an important regulator of hepatic inflammation, detoxification, and immunity, and contributes to the carcinogenesis of liver cancer. Intratumoral bacteria are supposed to be closer to the tumor cells, forming a microenvironment that may be relevant to the pathological process of hepatocellular carcinoma (HCC). However, the presence of viable intratumoral bacteria remains unclear. It is worth exploring whether the metataxonomic characteristics of intratumoral bacteria can be used as a potential marker for HCC prediction. Here, we present the first evidence of the existence of viable intratumoral bacteria in HCC using the tissue culture method. We revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. We analyzed the diversity, structure, and abundance of normal liver and HCC microbiota. We built a machine learning model for HCC prediction using intratumoral bacterial features. We show that specific taxa represent potential targets for both therapeutic and diagnostic interventions.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , RNA, Ribosomal, 16S/genetics , Liver Neoplasms/pathology , In Situ Hybridization, Fluorescence , Bacteria/genetics , Proteobacteria , Tumor Microenvironment
17.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: mdl-34827704

ABSTRACT

Adenosine triphosphate (ATP) and S-adenosyl-L-methionine (SAM) are important intermediates that are widely present in living organisms. Large-scale preparation and application of ATP or SAM is limited by expensive raw materials. To lower the production costs for ATP/SAM, in this study we used strategies applying engineered multidomain scaffold proteins to synthesize ATP and SAM. An artificial scaffold protein containing CBM3 domain, IM proteins and CL-labeled proteins was assembled to form complex 1 for catalytic reactions to increase ATP production. The ATP synthesis system produced approximately 25 g/L of ATP with approximately 15 g/L of ADP and 5 g/L of AMP using 12.5 g/L of adenosine and 40 g/L of sodium hexametaphosphate reaction at 35 °C and a pH of 8.5 for 6 h. Based on the above ATP synthesis system, two CL-labeled methionine adenosyltransferases (CL9-MAT4 and CL9-MAT5) were applied to construct scaffold protein complex 2 to achieve SAM synthesis. Approximately 25 µg of MAT4 in a reaction system with 0.3 M MgCl2 catalyzed at 20 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 0.9 g/L of SAM. Approximately 25 µg of MAT5 in a reaction system with 0.7 M MgCl2 catalyzed at 35 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 1.2 g/L of SAM. Here, we showed that low-cost substrates can be efficiently converted into high-value additional ATP and SAM via multi-enzyme catalytic reactions by engineered multidomain scaffold proteins.


Subject(s)
S-Adenosylmethionine , Catalysis , Cost-Benefit Analysis , Methionine Adenosyltransferase
18.
Microorganisms ; 9(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34576753

ABSTRACT

In this study, a method for the rapid screening, expression and purification of antimicrobial peptides (AMPs) was developed. AMP genes were fused to a heat-resistant CL7 tag using the SLOPE method, and cloned into Escherichia coli and Pichia pastoris expression vectors. Twenty E. coli and ten P. pastoris expression vectors were constructed. Expression supernatants were heated, heteroproteins were removed, and fusion proteins were purified by nickel affinity (Ni-NTA) chromatography. Fusion proteins were digested on the column using human rhinovirus (HRV) 3C protease, and AMPs were released and further purified. Five AMPs (1, 2, 6, 13, 16) were purified using the E. coli expression system, and one AMP (13) was purified using the P. pastoris expression system. Inhibition zone and minimum inhibitory concentration (MIC) tests confirmed that one P. pastoris⌐-derived and two E. coli-derived AMPs have the inhibition activity. The MIC of AMP 13 and 16 from E. coli was 24.2 µM, and the MIC of AMP 13 from P. pastoris was 8.1 µM. The combination of prokaryotic and eukaryotic expression systems expands the universality of the developed method, facilitating screening of a large number of biologically active AMPs, establishing an AMP library, and producing AMPs by industrialised biological methods.

19.
Aging (Albany NY) ; 13(9): 12733-12747, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33973530

ABSTRACT

While acknowledging carotid atherosclerosis (CAS) as a risk factor for ischemic stroke, reports on its pathogenesis are scarce. This study aimed to explore the potential mechanism of CAS through RNA-seq data analysis. Carotid intima tissue samples from CAS patients and healthy subjects were subjected to RNA-seq analysis, which yielded, 1,427 differentially expressed genes (DEGs) related to CAS. Further, enrichment analysis (Gene Ontology, KEGG pathway, and MOCDE analysis) was performed on the DEGs. Hub genes identified via the protein-protein interaction network (PPI) were then analyzed using TRRUST, DisGeNET, PaGenBase, and CMAP databases. Results implicated inflammation and immunity in the pathogenesis of CAS. Also, lung disease was associated with CAS. Hub genes were expressed in multiple diseases, mainly regulated by RELA and NFKB1. Moreover, three small-molecule compounds were found via the CMAP database for management of CAS; hub genes served as potential targets. Collectively, inflammation and immunity are the potential pathological mechanisms of CAS. This study implicates CeForanide, Chenodeoxycholic acid, and 0317956-0000 as potential drug candidates for CAS treatment.


Subject(s)
Carotid Artery Diseases/genetics , Gene Expression Regulation/immunology , Protein Interaction Maps/genetics , Carotid Artery Diseases/drug therapy , Carotid Artery Diseases/immunology , Carotid Artery Diseases/pathology , Case-Control Studies , Cefamandole/analogs & derivatives , Cefamandole/pharmacology , Cefamandole/therapeutic use , Chenodeoxycholic Acid/pharmacology , Chenodeoxycholic Acid/therapeutic use , Computational Biology , Datasets as Topic , Female , Gene Expression Regulation/drug effects , Healthy Volunteers , Humans , Male , Middle Aged , Protein Interaction Maps/drug effects , RNA-Seq , Tunica Intima/pathology
20.
Water Res ; 195: 116956, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676178

ABSTRACT

Due to the hydrophobicity and large specific surface area microplastics (MPs) have become the vector for the migration of environmental organic pollutants. Environmental aging process affects the physiochemical structure of MPs and their corresponding environmental behaviors, in which the effect of bisphenol A (BPA) binding mode within plastic matrix on aging behaviors of MPs is not reported. In this work, the structural properties and BPA sorption behaviors of low density polyethylene (LDPE) MPs with BPA additives and polycarbonate (PC) MPs with BPA monomers exposed to three types of artificial accelerated aging processes including UV/H2O, UV/H2O2, and UV/Cl2 systems were comparatively investigated. Virgin LDPE and PC exhibited obvious leakage of BPA additives or monomers. Aged LDPE had stronger sorption ability towards BPA in water environment with no observed leakage of BPA additives. While, aged PC had extremely high leakage of BPA monomers, which is similar to virgin PCs and was proved to be a persistent source of BPA release. The BPA sorption on aged LDPE or leaching from aged PC was influenced by aging processes, water pH, salinity, co-existing estradiol (E2), and water sources. This study reveals the potential ecological and environmental risks of MPs containing toxic additives/monomers during aging processes from a new perspective.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Benzhydryl Compounds , Hydrogen Peroxide , Phenols , Plastics , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...