Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38537947

ABSTRACT

COPD poses a significant global public health challenge, primarily characterised by irreversible airflow restriction and persistent respiratory symptoms. The hallmark pathology of COPD includes sustained airway inflammation and the eventual destruction of lung tissue structure. While multiple risk factors are implicated in the disease's progression, the underlying mechanisms remain largely elusive. The perpetuation of inflammation is pivotal to the advancement of COPD, emphasising the importance of investigating these self-sustaining mechanisms for a deeper understanding of the pathogenesis. Autoimmune responses constitute a critical mechanism in maintaining inflammation, with burgeoning evidence pointing to their central role in COPD progression; yet, the intricacies of these mechanisms remain inadequately defined. This review elaborates on the evidence supporting the presence of autoimmune processes in COPD and examines the potential mechanisms through which autoimmune responses may drive the chronic inflammation characteristic of the disease. Moreover, we attempt to interpret the clinical manifestations of COPD through autoimmunity.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Autoimmunity , Lung/pathology , Risk Factors , Inflammation
3.
Front Immunol ; 12: 594330, 2021.
Article in English | MEDLINE | ID: mdl-33828547

ABSTRACT

Cigarette smoke (CS)-induced macrophage activation and airway epithelial injury are both critical for the development of chronic obstructive pulmonary disease (COPD), while the eventual functions of autophagy in these processes remain controversial. We have recently developed a novel COPD mouse model which is based on the autoimmune response sensitized by CS and facilitated by elastin. In the current study, we therefore utilized this model to investigate the roles of autophagy in different stages of the development of bronchitis-like airway inflammation. Autophagic markers were increased in airway epithelium and lung tissues, and Becn+/- or Lc3b-/- mice exhibited reduced neutrophilic airway inflammation and mucus hyperproduction in this COPD mouse model. Moreover, treatment of an autophagic inhibitor 3-methyladenine (3-MA) either during CS-initiated sensitization or during elastin provocation significantly inhibited the bronchitis-like phenotypes in mice. Short CS exposure rapidly induced expression of matrix metallopeptidase 12 (MMP12) in alveolar macrophages, and treatment of doxycycline, a pan metalloproteinase inhibitor, during CS exposure effectively attenuated the ensuing elastin-induced airway inflammation in mice. CS extract triggered MMP12 expression in cultured macrophages, which was attenuated by autophagy impairment (Becn+/- or Lc3b-/-) or inhibition (3-MA or Spautin-1). These data, taken together, demonstrate that autophagy mediates both the CS-initiated MMP12 activation in macrophages and subsequent airway epithelial injury, eventually contributing to development COPD-like airway inflammation. This study reemphasizes that inhibition of autophagy as a novel therapeutic strategy for CS-induced COPD.


Subject(s)
Autophagy , Bronchitis/etiology , Bronchitis/metabolism , Elastin/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Biomarkers , Bronchitis/pathology , Cell Line , Cells, Cultured , Disease Models, Animal , Disease Susceptibility , Elastin/genetics , Gene Expression , Humans , Immunohistochemistry , Lung/metabolism , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Mice
4.
Eur Respir J ; 56(3)2020 09.
Article in English | MEDLINE | ID: mdl-32366484

ABSTRACT

It is currently not understood whether cigarette smoke exposure facilitates sensitisation to self-antigens and whether ensuing auto-reactive T cells drive chronic obstructive pulmonary disease (COPD)-associated pathologies.To address this question, mice were exposed to cigarette smoke for 2 weeks. Following a 2-week period of rest, mice were challenged intratracheally with elastin for 3 days or 1 month. Rag1-/- , Mmp12-/- , and Il17a-/- mice and neutralising antibodies against active elastin fragments were used for mechanistic investigations. Human GVAPGVGVAPGV/HLA-A*02:01 tetramer was synthesised to assess the presence of elastin-specific T cells in patients with COPD.We observed that 2 weeks of cigarette smoke exposure induced an elastin-specific T cell response that led to neutrophilic airway inflammation and mucus hyperproduction following elastin recall challenge. Repeated elastin challenge for 1 month resulted in airway remodelling, lung function decline and airspace enlargement. Elastin-specific T cell recall responses were dose dependent and memory lasted for over 6 months. Adoptive T cell transfer and studies in T cells deficient Rag1-/- mice conclusively implicated T cells in these processes. Mechanistically, cigarette smoke exposure-induced elastin-specific T cell responses were matrix metalloproteinase (MMP)12-dependent, while the ensuing immune inflammatory processes were interleukin 17A-driven. Anti-elastin antibodies and T cells specific for elastin peptides were increased in patients with COPD.These data demonstrate that MMP12-generated elastin fragments serve as a self-antigen and drive the cigarette smoke-induced autoimmune processes in mice that result in a bronchitis-like phenotype and airspace enlargement. The study provides proof of concept of cigarette smoke-induced autoimmune processes and may serve as a novel mouse model of COPD.


Subject(s)
Elastin , Pulmonary Disease, Chronic Obstructive , Animals , Autoimmunity , Disease Models, Animal , Humans , Lung , Mice , Mice, Inbred C57BL , Smoke/adverse effects , Smoking/adverse effects
5.
Autophagy ; 16(3): 435-450, 2020 03.
Article in English | MEDLINE | ID: mdl-31203721

ABSTRACT

Particulate matter (PM) is able to induce airway epithelial injury, while the detailed mechanisms remain unclear. Here we demonstrated that PM exposure inactivated MTOR (mechanistic target of rapamycin kinase), enhanced macroautophagy/autophagy, and impaired lysosomal activity in HBE (human bronchial epithelial) cells and in mouse airway epithelium. Genetic or pharmaceutical inhibition of MTOR significantly enhanced, while inhibition of autophagy attenuated, PM-induced IL6 expression in HBE cells. Consistently, club-cell-specific deletion of Mtor aggravated, whereas loss of Atg5 in bronchial epithelium reduced, PM-induced airway inflammation. Interestingly, the augmented inflammatory responses caused by MTOR deficiency were markedly attenuated by blockage of downstream autophagy both in vitro and in vivo. Mechanistically, the dysregulation of MTOR-autophagy signaling was partially dependent on activation of upstream TSC2, and interacted with the TLR4-MYD88 to orchestrate the downstream NFKB activity and to regulate the production of inflammatory cytokines in airway epithelium. Moreover, inhibition of autophagy reduced the expression of EPS15 and the subsequent endocytosis of PM. Taken together, the present study provides a mechanistic explanation for how airway epithelium localized MTOR-autophagy axis regulates PM-induced airway injury, suggesting that activation of MTOR and/or suppression of autophagy in local airway might be effective therapeutic strategies for PM-related airway disorders.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; ALI: air liquid interface; AP2: adaptor related protein complex 2; ATG: autophagy related; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CXCL: C-X-C motif chemokine ligand; DOX: doxycycline; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EPS15: epidermal growth factor receptor pathway substrate 15; HBE: human bronchial epithelial; H&E: hematoxylin & eosin; IKK: IKB kinase; IL: interleukin; LAMP2: lysosomal-associated membrane protein 2; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTEC: mouse tracheal epithelial cells; MTOR: mechanistic target of rapamycin kinase; MYD88: MYD88 innate immune signal transduction adaptor; NFKB: nuclear factor of kappa B; NFKBIA: NFKB inhibitor alpha; PM: particulate matter; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RELA: RELA proto-oncogene, NFKB subunit; SCGB1A1: secretoglobin family 1A member 1; siRNA: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electronic microscopy; TLR4: toll like receptor 4; TSC2: TSC complex subunit 2.


Subject(s)
Autophagy , Epithelial Cells/pathology , Particulate Matter/toxicity , Pneumonia/chemically induced , Pneumonia/pathology , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy-Related Protein 5/metabolism , Bronchi/pathology , Cell Line , Cytokines/metabolism , Endocytosis/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Deletion , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/metabolism , Models, Biological , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Protein Binding/drug effects , Proto-Oncogene Mas , Signal Transduction , Toll-Like Receptor 4/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
6.
J Immunol ; 200(8): 2571-2580, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29507104

ABSTRACT

Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD.


Subject(s)
Cell Death/physiology , Epithelial Cells/metabolism , Inflammation/metabolism , Nicotiana/adverse effects , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Bronchi/drug effects , Bronchi/metabolism , Cell Death/drug effects , Cell Line , Epithelial Cells/drug effects , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Interleukin-8/metabolism , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Emphysema/metabolism , Smoking/adverse effects
7.
Article in English | MEDLINE | ID: mdl-29445274

ABSTRACT

Introduction: Bronchial epithelial cell death and airway inflammation induced by cigarette smoke (CS) have been involved in the pathogenesis of COPD. GRP78, belonging to heat shock protein 70 family, has been implicated in cell death and inflammation, while little is known about its roles in COPD. Here, we demonstrate that GRP78 regulates CS-induced necroptosis and injury in bronchial epithelial cells. Materials and methods: GRP78 and necroptosis markers were examined in human bronchial epithelial (HBE) cell line, primary mouse tracheal epithelial cells, and mouse lungs. siRNA targeting GRP78 gene and necroptosis inhibitor were used. Expression of inflammatory cytokines, mucin MUC5AC, and related signaling pathways were detected. Results: Exposure to CS significantly increased the expression of GRP78 and necroptosis markers in HBE cell line, primary mouse tracheal epithelial cells, and mouse lungs. Inhibition of GRP78 significantly suppressed CS extract (CSE)-induced necroptosis. Furthermore, GRP78-necroptosis cooperatively regulated CSE-induced inflammatory cytokines such as interleukin 6 (IL6), IL8, and mucin MUC5AC in HBE cells, likely through the activation of nuclear factor (NF-κB) and activator protein 1 (AP-1) pathways, respectively. Conclusion: Taken together, our results demonstrate that GRP78 promotes CSE-induced inflammatory response and mucus hyperproduction in airway epithelial cells, likely through upregulation of necroptosis and subsequent activation of NF-κB and AP-1 pathways. Thus, inhibition of GRP78 and/or inhibition of necroptosis could be the effective therapeutic approaches for the treatment of COPD.


Subject(s)
Apoptosis , Bronchi/metabolism , Epithelial Cells/metabolism , Heat-Shock Proteins/metabolism , Lung Injury/metabolism , Pneumonia/metabolism , Smoke/adverse effects , Smoking/adverse effects , Animals , Apoptosis/drug effects , Bronchi/drug effects , Bronchi/pathology , Cell Line , Cytokines/metabolism , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Epithelial Cells/drug effects , Epithelial Cells/pathology , Heat-Shock Proteins/genetics , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Inflammation Mediators/metabolism , Lung Injury/etiology , Lung Injury/pathology , Lung Injury/prevention & control , Mice, Inbred C57BL , Mucin 5AC/metabolism , Mucus/metabolism , NF-kappa B/metabolism , Necrosis , Pneumonia/etiology , Pneumonia/pathology , Pneumonia/prevention & control , RNA Interference , Signal Transduction , Time Factors , Transcription Factor AP-1/metabolism , Transfection
8.
Oncotarget ; 8(44): 78031-78043, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100445

ABSTRACT

BACKGROUND: Increasing randomized controlled trials (RCTs) indicate that bronchoscopic lung volume reduction (BLVR) is effective for severe emphysema. In this meta-analysis, we investigated the efficacy and safety of BLVR in patients with severe emphysema. METHODS: PubMed, Embase and the Cochrane Library and reference lists of related articles were searched, and RCTs that evaluated BLVR therapy VS conventional therapy were included. Meta-analysis was performed only when included RCTs ≥ 2 trials. RESULTS: In total, 3 RCTs for endobronchial coils, 6 RCTs for endobronchial valves (EBV) and 2 RCTs for intrabronchial valves (IBV) were included. Compared with conventional therapy, endobronchial coils showed better response in minimal clinically important difference (MCID) for forced expiratory volume in 1s (FEV1) (RR = 2.37, 95% CI = 1.61 - 3.48, p < 0.0001), for 6-min walk test (6MWT) (RR = 2.05, 95% CI = 1.18 - 3.53, p = 0.01), and for St. George's Respiratory Questionnaire (SGRQ) (RR = 2.32, 95% CI = 1.77 - 3.03, p < 0.00001). EBV therapy also reached clinically significant improvement in FEV1 (RR = 2.96, 95% CI = 1.49 - 5.87, p = 0.002), in 6MWT (RR = 2.90, 95% CI = 1.24 - 6.79, p = 0.01), and in SGRQ (RR = 1.53, 95% CI = 1.22 - 1.92, p = 0.0002). Both coils and EBV treatment achieved statistically significant absolute change in FEV1, 6MWT, and SGRQ from baseline, also accompanied by serious adverse effects. Furthermore, subgroup analysis showed there was no difference between homogeneous and heterogeneous emphysema in coils group. However, IBV group failed to show superior to conventional group. CONCLUSIONS: Current meta-analysis indicates that coils or EBV treatment could significantly improve pulmonary function, exercise capacity, and quality of life compared with conventional therapy. Coils treatment could be applied in homogeneous emphysema, but further trials are needed.

9.
Toxicol Lett ; 280: 206-212, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28867211

ABSTRACT

Particulate matter (PM) is a significant risk factor for airway injury. We have recently demonstrated a pivotal role of autophagy in mediating PM-induced airway injury. In the present study, we examined the possible effects of autophagy inhibitors spautin-1 and 3-Methyladenine (3-MA) in protection of PM-induced inflammatory responses. We observed that PM triggered autophagy in human bronchial epithelial (HBE) cells and in mouse airways. Spautin-1 or 3-MA inhibited PM-induced expression of inflammatory cytokines in HBE cells, and decreased the neutrophil influx and proinflammatory cytokines induced by PM in vivo. We further illustrated that autophagy inhibitors suppressed the inflammation responses via inhibition of the nuclear factor-кB (NF-кB) pathway. Thus, this study shows a paradigm that autophagy inhibitors effectively decrease the PM-induced airway inflammation via suppressing the NF-кB pathway, which may provide novel preventive and/or protective approaches for PM-related airway injury.


Subject(s)
Adenine/analogs & derivatives , Autophagy/drug effects , Benzylamines/pharmacology , Environmental Pollutants/toxicity , Particulate Matter/toxicity , Quinazolines/pharmacology , Adenine/pharmacology , Animals , Cell Line , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/physiology , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL
10.
J Immunol Res ; 2017: 7915975, 2017.
Article in English | MEDLINE | ID: mdl-28536707

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.


Subject(s)
Disease Models, Animal , Inflammation , Neutrophils/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Animals , Disease Progression , Emphysema/immunology , Emphysema/physiopathology , Humans , Lung/pathology , Mice , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/physiopathology , Rats , Smoking
11.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L207-L217, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28473329

ABSTRACT

Pulmonary epithelial cells form the first line of defense of human airways against foreign irritants and also represent as the primary injury target of these pathogenic assaults. Autophagy is a revolutionary conserved ubiquitous process by which cytoplasmic materials are delivered to lysosomes for degradation when facing environmental and/or developmental changes, and emerging evidence suggests that autophagy plays pivotal but controversial roles in pulmonary epithelial injury. Here we review recent studies focusing on the roles of autophagy in regulating airway epithelial injury induced by various stimuli. Articles eligible for this purpose are divided into two groups according to the eventual roles of autophagy, either protective or deleterious. From the evidence summarized in this review, we draw several conclusions as follows: 1) in all cases when autophagy is decreased from its basal level, autophagy is protective; 2) when autophagy is deleterious, it is generally upregulated by stimulation; and 3) a plausible conclusion is that the endosomal/exosomal pathways may be associated with the deleterious function of autophagy in airway epithelial injury, although this needs to be clarified in future investigations.


Subject(s)
Autophagy/physiology , Epithelial Cells/pathology , Lung Injury/pathology , Animals , Epithelial Cells/metabolism , Humans , Lung Injury/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Signal Transduction/physiology
12.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1042-52, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27036871

ABSTRACT

Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases.


Subject(s)
Autophagy/drug effects , Mucin 5AC/genetics , Respiratory Mucosa/metabolism , Smoking/metabolism , Animals , Cells, Cultured , ErbB Receptors/metabolism , Gene Expression , Goblet Cells , Humans , Lung/metabolism , Lung/pathology , Mice, Knockout , Mucin 5AC/metabolism , Mucus/metabolism , Naphthyridines/pharmacology , Respiratory Mucosa/pathology , Signal Transduction , Nicotiana/chemistry , Transcription Factor AP-1/metabolism
13.
Autophagy ; 12(2): 297-311, 2016.
Article in English | MEDLINE | ID: mdl-26671423

ABSTRACT

Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.


Subject(s)
Autophagy , Bronchi/pathology , Epithelium/metabolism , Inflammation/etiology , Inflammation/pathology , Mucus/metabolism , Particulate Matter/adverse effects , Animals , Beclin-1/metabolism , Cytokines/metabolism , Endocytosis , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Epithelium/pathology , Humans , Lysosomes/metabolism , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Models, Biological , NF-kappa B/metabolism , Particle Size , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...