Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 11: 1301099, 2024.
Article in English | MEDLINE | ID: mdl-38993839

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown. Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis. Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry. Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC.

2.
Zool Res ; 45(4): 805-820, 2024 07 18.
Article in English | MEDLINE | ID: mdl-38894523

ABSTRACT

The organ-specific toxicity resulting from microplastic (MP) exposure has been extensively explored, particularly concerning the gut, liver, testis, and lung. However, under natural conditions, these effects are not restricted to specific organs or tissues. Investigating whether MP exposure presents a systemic threat to an entire organism, impacting factors such as lifespan, sleep, and fecundity, is essential. In this study, we investigated the effects of dietary exposure to two different doses of MPs (1-5 µm) using the terrestrial model organism Drosophila melanogaster. Results indicated that the particles caused gut damage and remained within the digestive system. Continuous MP exposure significantly shortened the lifespan of adult flies. Even short-term exposure disrupted sleep patterns, increasing the length of daytime sleep episodes. Additionally, one week of MP exposure reduced ovary size, with a trend towards decreased egg-laying in mated females. Although MPs did not penetrate the brain or ovaries, transcriptome analysis revealed altered gene expression in these tissues. In the ovary, Gene Ontology (GO) analysis indicated genotoxic effects impacting inflammation, circadian regulation, and metabolic processes, with significant impacts on extracellular structure-related pathways. In the brain, GO analysis identified changes in pathways associated with proteolysis and carbohydrate metabolism. Overall, this study provides compelling evidence of the systemic negative effects of MP exposure, highlighting the urgent need to address and mitigate environmental MP pollution.


Subject(s)
Drosophila melanogaster , Longevity , Microplastics , Ovary , Sleep , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Female , Ovary/drug effects , Longevity/drug effects , Sleep/drug effects , Microplastics/toxicity , Male , Organ Size/drug effects
3.
Mol Neurobiol ; 61(3): 1433-1447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37721689

ABSTRACT

Spinal cord injury (SCI) is a common clinical problem in orthopedics with a lack of effective treatments and drug targets. In the present study, we performed bioinformatic analysis of SCI datasets GSE464 and GSE45006 in the Gene Expression Omnibus (GEO) public database and experimentally validated CCL2 expression in an animal model of SCI. This was followed by stimulation of PC-12 cells using hydrogen peroxide to construct a cellular model of SCI. CCL2 expression was knocked down using small interfering RNA (si-CCL2), and PI3K signaling pathway inhibitors and activators were used to validate and observe the changes in downstream inflammation. Through data mining, we found that the inflammatory chemokine CCL2 and PI3K/Akt signaling pathways after SCI expression were significantly increased, and after peroxide stimulation of PC-12 cells with CCL2 knockdown, their downstream cellular inflammatory factor levels were decreased. The PI3K/Akt signaling pathway was blocked by PI3K inhibitors, and the downstream inflammatory response was suppressed. In contrast, when PI3K activators were used, the inflammatory response was enhanced, indicating that the CCL2-PI3K/Akt signaling pathway plays a key role in the regulation of the inflammatory response. This study revealed that the inflammatory chemokine CCL2 can regulate the inflammatory response of PC-12 cells through the PI3K/Akt signaling pathway, and blocking the expression of the inflammatory chemokine CCL2 may be a promising strategy for the treatment of secondary injury after SCI.


Subject(s)
Proto-Oncogene Proteins c-akt , Spinal Cord Injuries , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chemokine CCL2/pharmacology , Signal Transduction , Spinal Cord Injuries/metabolism , Computational Biology , Spinal Cord/metabolism
4.
J Fungi (Basel) ; 9(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37108847

ABSTRACT

The surface of the Saccharomyces cerevisiae spore wall exhibits a ridged appearance. The outermost layer of the spore wall is believed to be a dityrosine layer, which is primarily composed of a crosslinked dipeptide bisformyl dityrosine. The dityrosine layer is impervious to protease digestion; indeed, most of bisformyl dityrosine molecules remain in the spore after protease treatment. However, we find that the ridged structure is removed by protease treatment. Thus, a ridged structure is distinct from the dityrosine layer. By proteomic analysis of the spore wall-bound proteins, we found that hydrophilin proteins, including Sip18, its paralog Gre1, and Hsp12, are present in the spore wall. Mutant spores with defective hydrophilin genes exhibit functional and morphological defects in their spore wall, indicating that hydrophilin proteins are required for the proper organization of the ridged and proteinaceous structure. Previously, we found that RNA fragments were attached to the spore wall in a manner dependent on spore wall-bound proteins. Thus, the ridged structure also accommodates RNA fragments. Spore wall-bound RNA molecules function to protect spores from environmental stresses.

5.
Mol Plant Pathol ; 24(8): 999-1013, 2023 08.
Article in English | MEDLINE | ID: mdl-37026481

ABSTRACT

Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.


Subject(s)
Host-Pathogen Interactions , MicroRNAs , Host-Pathogen Interactions/genetics , RNA, Small Interfering/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Interference , Plants/genetics , Plants/metabolism
6.
Org Biomol Chem ; 20(33): 6659-6666, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35938496

ABSTRACT

We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which polyhaloalkanes were used as the precursor for polyhalomethyl and halogen radicals. Using this strategy, a series of valuable halogen-, CHCl2- or CCl3-containing spiro[5,5]trienones were synthesized in good yields with good functional group tolerance in one pot under simple and mild conditions. It is noted that an unprecedented halogenation instead of dibromomethylation was achieved when CH2Br2 was used in this work.


Subject(s)
Alkynes , Halogenation , Cyclization , Halogens
7.
Org Biomol Chem ; 19(40): 8701-8705, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34590107

ABSTRACT

A general visible-light-promoted metal-free synthesis of secondary and tertiary thiocarbamates starting from thiosulfonates and N-substituted formamides is developed. By employing rhodamine B as a photocatalyst and tert-butyl hydroperoxide (TBHP) as an oxidant, a wide scope of thiocarbamates can be obtained through direct thiolation of acyl C-H bonds under irradiation of blue light at room temperature for 12 h.

8.
RSC Adv ; 11(18): 10836-10841, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-35423554

ABSTRACT

In this work, an ESIPT-based fluorescence probe, 5'-amino-2-(2'-hydroxyphenyl)benzimidazole (P1), was synthesized and explored for the ratiometric detection of phosgene. Compared to 2-(2'-hydroxyphenyl)benzimidazole (HBI), P1 exhibits high sensitivity (LoD = 5.3 nM) and selectivity toward phosgene with the introduction of the amine group. Furthermore, simple P1 loaded test papers are manufactured and display selective fluorescent detection of phosgene in the gas phase.

9.
Environ Sci Technol ; 53(18): 10917-10925, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31432660

ABSTRACT

The pertechnetate anion (99TcO4-) is a long-lived radioactive species that is soluble in aqueous solution, in contrast to sparingly soluble 99TcO2. Results are reported for photocatalytic reduction and removal of perrhenate (ReO4-), a nonradioactive surrogate for 99TcO4-, using a TiO2 (P25) nanoparticle suspension in formic acid under UV-visible irradiation. Re(VII) removal up to 98% was achieved at pH = 3 under air or N2. The proposed mechanism is Re(VII)/Re(IV) reduction mediated by reducing radicals (·CO2-) from oxidation of formic acid, not direct reduction by photogenerated electrons of TiO2. Recycling results indicate that photocatalytic reduction of ReO4- exhibits excellent regeneration and high activity with >95% removal even after five cycles. 99Tc(VII) is more easily reduced than Re(VII) in the presence of NO3- with very slow redissolution of reduced 99Tc. This study presents a novel method for the removal of ReO4-/99TcO4- from aqueous solution, with potential application for deep geological disposal.


Subject(s)
Rhenium , Sodium Pertechnetate Tc 99m , Anions , Water
10.
Front Microbiol ; 10: 652, 2019.
Article in English | MEDLINE | ID: mdl-31001229

ABSTRACT

The watermelon (Citrullus lanatus) is one of the most important horticultural crops for fruit production worldwide. However, the production of watermelon is seriously restricted by one kind of soilborne disease, Fusarium wilt, which is caused by Fusarium oxysporum f. sp. niveum (Fon). In this study, we identified an efficient PGPR strain B. velezensis F21, which could be used in watermelon production for Fon control. The results of biocontrol mechanisms showed that B. velezensis F21 could suppress the growth and spore germination of Fon in vitro. Moreover, B. velezensis F21 could also enhance plant basal immunity to Fon by increasing the expression of plant defense related genes and activities of some defense enzymes, such as CAT, POD, and SOD. To elucidate the detailed mechanisms regulating B. velezensis F21 biocontrol of Fusarium wilt in watermelon, a comparative transcriptome analysis using watermelon plant roots treated with B. velezensis F21 or sterile water alone and in combination with Fon inoculation was conducted. The transcriptome sequencing results revealed almost one thousand ripening-related differentially expressed genes (DEGs) in the process of B. velezensis F21 triggering ISR (induced systemic resistance) to Fon. In addition, the Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that numerous of transcription factors (TFs) and plant disease resistance genes were activated and validated by using quantitative real-time PCR (qRT-PCR), which showed significant differences in expression levels in the roots of watermelon with different treatments. In addition, genes involved in the MAPK signaling pathway and phytohormone signaling pathway were analyzed, and the results indicated that B. velezensis F21 could enhance plant disease resistance to Fon through the above related genes and phytohormone signal factors. Taken together, this study substantially expands transcriptome data resources and suggests a molecular framework for B. velezensis F21 inducing systemic resistance to Fon in watermelon. In addition, it also provides an effective strategy for the control of Fusarium wilt in watermelon.

11.
Environ Pollut ; 248: 82-89, 2019 May.
Article in English | MEDLINE | ID: mdl-30780070

ABSTRACT

One of the most important reasons for the controversy over the development of nuclear energy is the proper disposal of spent fuel. Separation of actinide and lanthanide ions is an important part of safe long-term storage of radioactive waste. Herein, a three-dimensional (3D) graphene-based macrostructure (GOCS) was utilized to remove actinide thorium and lanthanide europium ions from aqueous solutions. The adsorption of Eu(III) and Th(IV) on the GOCS was evaluated as a function of adsorption time, solution pH, initial ion concentrations, and ionic strength. The experimentally determined maximum adsorption capacities of this GOCS for Eu(III) (pH 6.0) and Th(IV) (pH 3.0) are as high as 150 and 220 mg/g, respectively. By using Fourier transformation infrared (FT-IR), X-ray photoelectron (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy, we concluded that the Eu(III) and Th(IV) adsorption was predominantly attributed to the inner-sphere coordination with various oxygen- and nitrogen-containing functional groups on GOCS surfaces. Our selective adsorption results demonstrate that the actinide and lanthanide ions can be effectively separated from transition metal ions. This study provides new clues to the overall recycling of actinide and lanthanide ions in radioactive environmental pollution treatments.


Subject(s)
Chitosan/chemistry , Environmental Restoration and Remediation/methods , Europium/chemistry , Graphite/chemistry , Radioactive Waste/analysis , Thorium/chemistry , Adsorption , Hydrogen-Ion Concentration , Nuclear Power Plants , Osmolar Concentration , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
12.
Environ Sci Technol ; 51(10): 5666-5674, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28409920

ABSTRACT

The separation and recovery of uranium from radioactive wastewater is important from the standpoints of environmental protection and uranium reuse. In the present work, magnetically collectable TiO2/Fe3O4 and its graphene composites were fabricated and utilized for the photocatalytical removal of U(VI) from aqueous solutions. It was found that, under ultraviolet (UV) irradiation, the photoreactivity of TiO2/Fe3O4 for the reduction of U(VI) was 19.3 times higher than that of pure TiO2, which is strongly correlated with the Fe0 and additional Fe(II) generated from the reduction of Fe3O4 by TiO2 photoelectrons. The effects of initial uranium concentration, solution pH, ionic strength, the composition of wastewater, and organic pollutants on the U(VI) removal by TiO2/Fe3O4 were systematically investigated. The results demonstrated its excellent performance in the cleanup of uranium contamination. As graphene can efficiently attract the TiO2 photoelectrons and thus decrease their transfer to Fe3O4, the photodissolution of Fe3O4 in the TiO2/graphene/Fe3O4 composite can be largely alleviated compared to that of the TiO2/Fe3O4, rendering this ternary composite a much higher stability. In addition, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray absorption near edge spectroscopy (XANES), and X-ray photoelectron spectroscopy (XPS) were used to explore the reaction mechanisms.


Subject(s)
Titanium , Uranium , Graphite , Magnetics , Water Purification
13.
Dalton Trans ; 45(34): 13304-7, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27480444

ABSTRACT

The first 3D actinide polyrotaxane framework (named IHEP-URCP-2) has been obtained based on windmill-like six-connected high-nuclear oligomeric uranyl nodes under hydrothermal conditions. Notably, the in situ formed pseudorotaxane ligand simultaneously plays dual roles of both a bulky pseudorotaxane linker and a supramolecular guest.

14.
Inorg Chem ; 54(8): 3829-34, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25835754

ABSTRACT

A new 3-fold interpenetrated uranyl organic framework, UO2(bdc)(dmpi), was hydrothermally synthesized using 1,4-benzenedicarboxylic acid (H2bdc) and 1-(4-(1H-imidazol-1-yl)-2,5-dimethylphenyl)-1H-imidazole (dmpi). This framework, which was determined by synchrotron radiation X-ray, exhibited a new 3-fold interpenetrated (2,4)-connected topology with the Schläfli symbol of (12(6))(12)2. Additionally, large incurvation happened to the bond angle of [O=U=O](2+), which was always arranged in a rigorous line. Computational results based on density functional theory (DFT) indicated that the bent geometry of uranyl in UO2(bdc)(dmpi) was mainly due to the higher charge populations in the valence 6d shells of uranium, rendered by the electronegative imidazoles.

15.
J Hazard Mater ; 290: 26-33, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25734531

ABSTRACT

Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO3, humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C0(U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C0(U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH4)2CO3 solution. Partially reductive precipitation of U(VI) as U3O7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe(2+) ions. The dissolution of Fe(0) cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment.


Subject(s)
Graphite/chemistry , Groundwater/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Uranium/isolation & purification , Water Pollutants, Radioactive/isolation & purification , Humic Substances , Hydrogen-Ion Concentration , Indicators and Reagents , Kinetics , Microscopy, Electron, Scanning , Solutions , Water , Water Purification/methods , X-Ray Diffraction
16.
Adv Mater ; 26(46): 7807-48, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25169914

ABSTRACT

Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well.


Subject(s)
Actinoid Series Elements/chemistry , Synchrotrons , Ionic Liquids/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Quantum Theory , Radioactive Waste , Salts/chemistry , Scattering, Small Angle , X-Ray Absorption Spectroscopy , X-Ray Diffraction
17.
ACS Appl Mater Interfaces ; 6(7): 4786-96, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24617841

ABSTRACT

The potential industrial application of thorium (Th), as well as the environmental and human healthy problems caused by thorium, promotes the development of reliable methods for the separation and removal of Th(IV) from environmental and geological samples. Herein, the phosphonate-amino bifunctionalized mesoporous silica (PAMS) was fabricated by a one-step self-assembly approach for enhancing Th(IV) uptake from aqueous solution. The synthesized sorbent was found to possess ordered mesoporous structures with uniform pore diameter and large surface area, characterized by SEM, XRD, and N2 sorption/desorption measurements. The enhancement of Th(IV) uptake by PAMS was achieved by coupling of an access mechanism to a complexation mechanism, and the sorption can be optimized by adjusting the coverage of the functional groups in the PAMS sorbent. The systemic study on Th(IV) sorption/desorption by using one coverage of PAMS (PAMS12) shows that the Th(IV) sorption by PAMS is fast with equilibrium time of less than 1 h, and the sorption capacity is more than 160 mg/g at a relatively low pH. The sorption isotherm has been successfully modeled by the Langmuir isotherm and D-R isotherm, which reveals a monolayer homogeneous chemisorption of Th(IV) in PAMS. The Th(IV) sorption by PAMS is pH dependent but ionic strength independent. In addition, the sorbed Th(IV) can be completely desorbed using 0.2 mol/L or more concentrated nitric acid solution. The sorption test performed in the solution containing a range of competing metal ions suggests that the PAMS sorbent has a desirable selectivity for Th(IV) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...