Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Br J Pharmacol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

2.
Heliyon ; 10(7): e28985, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617907

ABSTRACT

Background: Nephronophthisis (NPHP) is a rare autosomal recessive inherited tubulointerstitial nephropathy, the most prevalent genetic cause of end-stage renal disease (ESRD) in children. Convincing evidence indicated that the overall prevalence of NPHP in adult-onset ESRD is very likely to be an underestimation. Therefore, understanding the genetic background and clinicopathologic features of adult-onset NPHP is warranted. Case presentation: we reported one intriguing case with concurrent NPHP3 c.2694-2_2694-1delAG (splicing) variant and c.1082C > G (p.S361C) variant. A 48-year-old male was admitted to our hospital, complained about renal dysfunction for 10 years, and found right renal space-occupying lesion for 1 week. One of the most interesting clinical features is adult-onset ESRD, which differs from previous cases. Another discovery of this study is that the NPHP harboring NPHP3 deletion may be associated with clear cell renal cell carcinoma. Conclusion: In conclusion, we report two mutations in the NPHP3 gene that cause NPHP with adult-onset ESRD and renal clear cell carcinoma in a Chinese family, enriching the clinical features of NPHP.

3.
Chin Med J (Engl) ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445356

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS: We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS: Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS: Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.

4.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Article in English | MEDLINE | ID: mdl-38481813

ABSTRACT

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Subject(s)
Acute Kidney Injury , Fibroblast Growth Factor 1 , Humans , Mice , Animals , Fibroblast Growth Factor 1/genetics , Cyclin-Dependent Kinases/genetics , Kidney , Acute Kidney Injury/chemically induced , Genomic Instability
5.
Sci Rep ; 14(1): 6574, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503865

ABSTRACT

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Protein Kinases , Cyclin-Dependent Kinases/metabolism , Prognosis , Carcinogenesis , Biomarkers, Tumor/metabolism , Immunomodulation/genetics
6.
Acta Physiol (Oxf) ; 240(4): e14121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409944

ABSTRACT

AIM: Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS: ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS: We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION: Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.


Subject(s)
Acute Kidney Injury , Mitochondrial Diseases , Reperfusion Injury , Mice , Animals , NF-kappa B/metabolism , Tandem Mass Spectrometry , Kidney/metabolism , Mitochondria/metabolism , Reperfusion Injury/metabolism , Reperfusion , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Ischemia/pathology , Apoptosis
7.
Diabetol Metab Syndr ; 16(1): 40, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341600

ABSTRACT

BACKGROUND: Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/Val on tubulointerstitial fibrosis in DKD is still largely unclear. METHODS: Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro. RESULTS: We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the presence of Sirt1 specific inhibitor. CONCLUSIONS: Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the progression of DKD in clinical practice.

8.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37943391

ABSTRACT

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Diabetic Nephropathies/genetics , Homeostasis , Mitochondria , Fibrosis
9.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596398

ABSTRACT

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Subject(s)
Diabetic Nephropathies , Exosomes , MicroRNAs , Satellite Cells, Skeletal Muscle , Animals , Humans , Mice , Diabetes Mellitus/therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/therapy , Exosomes/metabolism , Fibrosis , MicroRNAs/metabolism , MicroRNAs/pharmacology , MicroRNAs/therapeutic use , Satellite Cells, Skeletal Muscle/metabolism , Diabetes Complications/therapy
11.
Cell Death Dis ; 14(5): 339, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225700

ABSTRACT

The transcription factor hypoxia-inducible factor-1α (HIF-1α), as a master regulator of adaptive responses to hypoxia, possesses two transcriptional activation domains [TAD, N-terminal (NTAD), and C-terminal (CTAD)]. Although the roles of HIF-1α NTAD in kidney diseases have been recognized, the exact effects of HIF-1α CTAD in kidney diseases are poorly understood. Here, two independent mouse models of hypoxia-induced kidney injury were established using HIF-1α CTAD knockout (HIF-1α CTAD-/-) mice. Furthermore, hexokinase 2 (HK2) and mitophagy pathway are modulated using genetic and pharmacological methods, respectively. We demonstrated that HIF-1α CTAD-/- aggravated kidney injury in two independent mouse models of hypoxia-induced kidney injury, including ischemia/reperfusion-induced kidney injury and unilateral ureteral obstruction-induced nephropathy. Mechanistically, we found that HIF-1α CTAD could transcriptionally regulate HK2 and subsequently ameliorate hypoxia-induced tubule injury. Furthermore, it was found that HK2 deficiency contributed to severe renal injury through mitophagy inhibition, while mitophagy activation using urolithin A could significantly protect against hypoxia-induced kidney injury in HIF-1α C-TAD-/- mice. Our findings suggested that the HIF-1α CTAD-HK2 pathway represents a novel mechanism of kidney response to hypoxia, which provides a promising therapeutic strategy for hypoxia-induced kidney injury.


Subject(s)
Hexokinase , Hypoxia-Inducible Factor 1, alpha Subunit , Reperfusion Injury , Animals , Mice , Disease Models, Animal , Hexokinase/genetics , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kidney , Mitophagy , Transcriptional Activation
12.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Article in English | MEDLINE | ID: mdl-37039838

ABSTRACT

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Subject(s)
Exosomes , Quercetin , Mice , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Exosomes/metabolism , Lipopolysaccharides/pharmacology , Inflammation/metabolism , Macrophages/metabolism , Fibrosis , Epithelial Cells/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology
13.
Sensors (Basel) ; 23(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36905014

ABSTRACT

When it is necessary to detect various physiological signals of the human body, clothing embroidered with near-field effect patterns can be used as a long-term power supply medium to supply power to long-distance transmitters and receivers to form a wireless power supply system. The proposed system uses an optimized parallel circuit to achieve a power transfer efficiency of more than five times higher than that of the existing series circuit. The power transfer efficiency of simultaneously supplying energy to multiple sensors is increased higher than five times and even more when only one sensor is coupled. When powering eight sensors at the same time, the power transmission efficiency can reach 25.1%. Even when eight sensors powered by the coupled textile coils are reduced to one, the power transfer efficiency of the whole system can reach 13.21%. Additionally, the proposed system is also applicable when the number of sensors ranges from 2 to 12.

14.
Mol Cell Endocrinol ; 568-569: 111913, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36990198

ABSTRACT

Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Exosomes , Podocytes , Humans , Podocytes/metabolism , Diabetic Nephropathies/metabolism , Sirtuin 1/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Hydrogen-Ion Concentration , Diabetes Mellitus/metabolism
16.
Int J Hyperthermia ; 40(1): 2154576, 2023.
Article in English | MEDLINE | ID: mdl-36535945

ABSTRACT

OBJECTIVE: This study compared the feasibility and efficacy of transabdominal ultrasound (TAU) and combined transabdominal and transvaginal ultrasound (TA/TV US)-guided percutaneous microwave ablation (PMWA) for uterine myoma (UM). METHOD: This study enrolled 73 patients with UM who underwent PMWA via the transabdominal ultrasound-guided (TA group) or the combined transabdominal and transvaginal ultrasound-guided (TA/TV group) approaches. The intraoperative supplementary ablation rates, postoperative immediate ablation rates, lesion reduction rates and other indicators three months postoperatively were compared between the groups. The display of the needle tip, endometrium, uterine serosa, rectum and myoma feeding vessels under the guidance of TAU, transvaginal ultrasound (TVU) and TA/TV US were evaluated in the TA/TV group. RESULTS: In the TA/TV group, the real-time position of the needle tip and the endometrium complete display rate of the same lesions with TVU guidance were significantly higher than those using TAU. TA/TV US guidance significantly improved the complete display rate of each indicator. The intraoperative supplementary ablation rate in the TA/TV group was lower than that in the TA group. Similarly, the postoperative immediate ablation and volume reduction rates of the lesions three months postoperatively were higher than those in the TA group, especially for lesions with a maximum diameter ≥6 cm. CONCLUSION: TA/TV US is an effective monitoring method that can be used to improve imaging display. Its use is recommended in patients with obesity, poor transabdominal ultrasound image quality and large myoma volumes.


Subject(s)
Leiomyoma , Myoma , Uterine Neoplasms , Female , Humans , Microwaves , Leiomyoma/surgery , Ultrasonography , Ultrasonography, Interventional , Uterine Neoplasms/surgery
17.
J Minim Invasive Gynecol ; 30(2): 137-146, 2023 02.
Article in English | MEDLINE | ID: mdl-36384213

ABSTRACT

STUDY OBJECTIVE: To evaluate and compare the clinical efficacy of transabdominal ultrasound-guided percutaneous microwave ablation (PMWA) in the treatment of symptomatic focal and nonfocal adenomyosis. DESIGN: Retrospective cohort study. SETTING: Longyan First Affiliated Hospital of Fujian Medical University. PATIENTS: From May 2019 to October 2021, 107 patients with symptomatic adenomyosis who refused hysterectomy received PMWA. INTERVENTIONS: Patients were divided into a focal group (n = 47, including 40 focal adenomyosis and 7 adenomyoma cases) and a nonfocal group (n = 60, including 36 diffuse and 24 mixed adenomyosis cases) according to the extent of lesion involvement. MEASUREMENTS AND MAIN RESULTS: We collected and analyzed preoperative baseline data on patient characteristics; postoperative efficacy measures at 3, 6, and 12 months; and intraoperative and postoperative complications. There was a significant post-treatment reduction in the uterine corpus volume and cancer antigen 125 levels, an increase in hemoglobin levels, and an improvement in the Uterine Fibroid Symptom and Health-related Quality of Life scores (consisting of the Symptom Severity Scale and the Health-related Quality of Life scale), dysmenorrhea visual analog scale, and menstrual volume score (MVS) (all p <.05). One patient had recurrence. Most adverse events (72.0%) were mild. Although the nonfocal group had significantly greater anemia severity, higher Symptom Severity Scale and MVS, lower Health-related Quality of Life scale, greater extent and severity of myometrial involvement, and larger uterine corpus volume, after treatment, the uterine corpus volume, uterine corpus reduction rate, cancer antigen 125 levels, hemoglobin levels, Uterine Fibroid Symptom and Health-related Quality of Life score, dysmenorrhea visual analog scale, MVS score, and clinical response rate were similar between the groups (p >.05). CONCLUSION: PMWA had good, similar, short-term efficacy for symptomatic focal and nonfocal adenomyosis.


Subject(s)
Adenomyosis , Leiomyoma , Female , Humans , Adenomyosis/diagnostic imaging , Adenomyosis/surgery , Adenomyosis/complications , CA-125 Antigen , Dysmenorrhea/etiology , Dysmenorrhea/surgery , Hemoglobins , Leiomyoma/surgery , Microwaves/therapeutic use , Quality of Life , Retrospective Studies , Treatment Outcome , Ultrasonography, Interventional
18.
Mol Ther ; 31(5): 1437-1450, 2023 05 03.
Article in English | MEDLINE | ID: mdl-35982620

ABSTRACT

Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.


Subject(s)
Extracellular Vesicles , Reperfusion Injury , Animals , Mice , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Kidney/metabolism , Reperfusion Injury/metabolism
19.
NPJ Regen Med ; 7(1): 73, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528739

ABSTRACT

Peritubular capillaries (PTCs) are closely related to renal tubules in structure and function, and both are pivotal regulators in the development and progression of acute kidney injury (AKI). However, the mechanisms that underlie the interaction between PTCs and tubules during AKI remain unclear. Here we explored a new mode of tubulovascular crosstalk mediated by small extracellular vesicles (sEV) after AKI. In response to renal ischemia/reperfusion (I/R) injury, endothelial proliferation of PTCs and tubular expression of vascular endothelial growth factor-A (VEGF-A) were increased, accompanied by a remarkable redistribution of cytoplasmic VEGF-A to the basolateral side of tubular cells. Meanwhile, the secretion mode of VEGF-A was converted in the injured tubular cells, which showed a much greater tendency to secrete VEGF-A via sEV other than the free form. Interestingly, tubular cell-derived VEGF-A-enriched sEV (sEV-VEGF-A) turned out to promote endothelial proliferation which was regulated by VEGF receptors 1 and 2. Furthermore, inhibition of renal sEV secretion by Rab27a knockdown resulted in a significant decrease in the proliferation of peritubular endothelial cells in vivo. Importantly, taking advantage of the newly recognized endogenous repair response of PTCs, exogenous supplementation of VEGF-A + sEV efficiently recused PTC rarefaction, improved renal perfusion, and halted the AKI to CKD transition. Taken together, our study uncovered a novel intrinsic repair response after AKI through renal tubule-PTC crosstalk via sEV-VEGF-A, which could be exploited as a promising therapeutic angiogenesis strategy in diseases with ischemia.

20.
BMC Nephrol ; 23(1): 399, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510177

ABSTRACT

BACKGROUND: This study assessed the predictive value of uric acid (UA) for contrast-induced acute kidney injury (CI-AKI) in patients with type 2 diabetes mellitus (T2DM) who underwent coronary angiography (CAG). A nomogram to aid in the prediction of CI-AKI was also developed and validated, and the construction of a prognostic nomogram combined with clinical features was attempted. METHODS: This study retrospectively enrolled T2DM patients who underwent CAG between December 2019 and December 2020 at the Affiliated Zhongda Hospital of Southeast University. Multivariable logistic regression analysis was used for the analysis of clinical outcomes. Receiver operating characteristic (ROC) analyses were performed to determine the area under the ROC curve (AUC) and the cut-off points for continuous clinical data. The prediction accuracies of models for CI-AKI were estimated through Harrell's concordance indices (C-index). Nomograms of the prognostic models were plotted for individualized evaluations of CI-AKI in T2DM patients after CAG. RESULTS: A total of 542 patients with T2DM who underwent CAG were included in this study. We found that a high UA level (≥ 425.5 µmol/L; OR = 6.303), BUN level (≥ 5.98 mmol/L; OR = 3.633), Scr level (≥ 88.5 µmol/L; OR = 2.926) and HbA1C level (≥ 7.05%; OR = 5.509) were independent factors for CI-AKI in T2DM patients after CAG. The nomogram model based on UA, BUN, Scr and HbA1C levels presented outstanding performance for CI-AKI prediction (C-index: 0.878). Decision curve analysis (DCA) showed good clinical applicability in predicting the incidence of CI-AKI in T2DM patients who underwent CAG. CONCLUSION: High UA levels are associated with an increased incidence of CI-AKI in T2DM patients after CAG. The developed nomogram model has potential predictive value for CI-AKI and might serve as an economic and efficient prognostic tool in clinical practice.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus, Type 2 , Humans , Coronary Angiography/adverse effects , Uric Acid , Retrospective Studies , Diabetes Mellitus, Type 2/complications , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...