Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.490
Filter
1.
Neural Regen Res ; 20(5): 1350-1363, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075896

ABSTRACT

The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.

2.
Front Pharmacol ; 15: 1415844, 2024.
Article in English | MEDLINE | ID: mdl-38966558

ABSTRACT

Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, ß-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.

3.
Chem Biol Interact ; : 111133, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969277

ABSTRACT

Psoraleae Fructus (PF, Psoralea corylifolia L.), a traditional medicine with a long history of application, is widely used clinically for the treatment of various diseases. However, the reports of PF-related adverse reactions, such as hepatotoxicity, phototoxic dermatitis, and allergy, are increasing year by year, with liver injury being the mostly common. Our previous studies have demonstrated that PF and its preparations can cause liver injury in lipopolysaccharide (LPS)-mediated susceptibility mouse model, but the mechanism of PF-related liver injury is unclear. In this study, we showed that PF and bavachinin, a major component of PF, can directly induce the expression of caspase-1 and interleukin-1ß (IL-1ß), indicating that PF and bavachinin can directly triggered the activation of inflammasome. Furthermore, pretreatment with NLR family pyrin domain-containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome inhibitors, containing MCC950, ODN TTAGGG (ODN) and carnosol, all significantly reversed bavachinin-induced inflammasome activation. Mechanistically, bavachinin dose-dependently promote Gasdermin D (GSDMD) post-shear activation and then induce mitochondrial reactive oxygen species (mtROS) production and this effect is markedly inhibited by pretreatment with N-Acetylcysteine amide (NAC). In addition, combination treatment of LPS and bavachinin significantly induced liver injury in mice, but not LPS or bavachinin alone, and transcriptome analysis further validated these results. Thus, PF and bavachinin can induce the activation of inflammasome by promoting GSDMD cleavage and cause hepatotoxicity in mice. Therefore, PF, bavachinin, and PF-related preparations should be avoided in patients with inflammasome activation-associated diseases.

4.
J Acoust Soc Am ; 156(1): 176-188, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38975834

ABSTRACT

Reverberation is the main background interference for active sonar detection in shallow sea. Reverberation suppression is crucial for enhancing the performance of active sonar. In this paper, a reverberation suppression method based on low-rank sparse decomposition is proposed. First, both the sparseness property of the targets and the non-local self-correlation property of the reverberation are used to construct a range azimuth patch matrix model. The reverberation suppression problem is then transformed into an optimization problem for the recovery of a low-rank sparse matrix. The validity of the proposed method is verified by using the measured data. Results show that, compared with the reverberation pre-whitening and sparse fractional Fourier transform methods, the proposed method significantly improves the reverberation suppression performance and achieves a better detection result when the signal-to-interference ratio is below -2 dB.

5.
Pak J Med Sci ; 40(6): 1158-1162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952517

ABSTRACT

Objective: To determine the impacts to research the impacts of pain's Specialized Pain Management Nursing Care in the perioperative period on pain symptoms and life quality of patients experiencing minimally invasive surgery for spinal injury. Method: Eighty patients with a spinal injury who underwent minimally invasive surgery in the Department of Orthopedics of Baoding No.1 Hospital from January 2018 to December 2021 were retrospectively analyzed. They were split into two groups following different nursing methods (n=40 each group). Specialized Pain Management Nursing Care were given to patients in the observation group. Those in the control group were given treated with routine care. Their pain score and nursing effect were compared, after which their quality of life, daily living ability and complication rate compared and analyzed. Results: The pain degree in the control group was considerably more than that in the observation group in the 1st postoperative period. The pain degree, which decreased in both groups, slumped more significantly in the observation group on the 2nd and 3rd postoperative days. The postoperative hospital stays and pain duration in the observation group were shorter than those in the control group (P<0.05), and the nursing effect was significantly better than that in the control group (P<0.05). After postoperative nursing intervention. Conclusion: Minimally invasive surgery integrated with the Specialized Pain Management Nursing Care can remarkably ameliorate pain after spinal injury surgery, reducing complications' incidence, and improving the life quality for patients.

6.
J Clin Virol ; 174: 105710, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954911

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous and oncogenic virus that is associated with various malignancies and non-malignant diseases and EBV DNA detection is widely used for the diagnosis and prognosis prediction for these diseases. The dried blood spots (DBS) sampling method holds great potential as an alternative to venous blood samples in geographically remote areas, for individuals with disabilities, or for newborn blood collection. Therefore, the objective of this study was to assess the viability of detecting EBV DNA load from DBS. Matched whole blood and DBS samples were collected for EBV DNA extraction and quantification detection. EBV DNA detection in DBS presented a specificity of 100 %. At different EBV DNA viral load in whole blood, the sensitivity of EBV DNA detection in DBS was 38.78 % (≥1 copies/mL), 43.18 % (≥500 copies/mL), 58.63 % (≥1000 copies/mL), 71.43 % (≥2000 copies/mL), 82.35 % (≥4000 copies/mL), and 92.86 % (≥5000 copies/mL), respectively. These results indicated that the sensitivity of EBV DNA detection in DBS increased with elevating viral load. Moreover, there was good correlation between EBV DNA levels measured in whole blood and DBS, and on average, the viral load measured in whole blood was about 6-fold higher than in DBS. Our research firstly demonstrated the feasibility of using DBS for qualitative and semi-quantitative detection of EBV DNA for diagnosis and surveillance of EBV-related diseases.

7.
Heliyon ; 10(11): e30950, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947437

ABSTRACT

Understanding who adopt green production and why they choose this strategy is an important issue that needs to be addressed in the context of increasingly severe agricultural pollution. Previous studies have generally investigated subsistence-oriented smallholders, typically employing profit maximization or risk minimization models. However, Chinese farmers have differentiated, and have unique characteristics. This study collected data from 960 random samples of rice farmers and conducted quantitative analysis. The findings reveal that 94.9 % of the farmers had less than 2-ha rice-planting area, and 80.21 % of farmers reported that their purpose of planting rice was for family self-feeding. Furthermore, the new standard to define smallholder based on whether their production purpose is self-feeding or selling and found that non-smallholders had an overall advantage and passed the t-test. Even more non-smallholder (76.32 %) intentionally chose green pesticide than smallholders (66.1 %), but their decision-making logic was different. Binary logistic regression results show that three aspects of self-actualization (environmental, market, and personal) positively and significantly affected the green production behavior of smallholders, but not significant for non-smallholders. This study suggests that in China, where smallholders are the mainstay of agriculture production, green production by smallholders will greatly improve the ecological environment and provide high quality agricultural products.

8.
ACS Omega ; 9(25): 27017-27029, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947824

ABSTRACT

Osteoarthritis (OA) is a kind of arthritis that impairs movement and causes joint discomfort. Recent research has demonstrated a connection between cellular senescence and the degenerative processes of OA chondrocytes. In yeast and human cells, protein tyrosine phosphatase 1B (PTP1B) knockdown prolongs longevity; however, the function of PTP1B in chondrocyte senescence has not been investigated. The goal of the current investigation was to evaluate PTP1B's contribution to human OA chondrocyte senescence. The function of PTP1B and cellular senescence in the onset of OA was investigated and confirmed by using a combination of bioinformatics techniques, clinical samples, and in vitro experimental procedures. The RNA sequencing data pertinent to the OA were obtained using the Gene Expression Omnibus database. Function enrichment analysis, protein-protein correlation analysis, the construction of the correlation regulatory network, and an investigation into possible connections between PTP1B and cellular senescence in OA were all carried out using various bioinformatic techniques. Compared with healthy cartilage, PTP1B expression was increased in OA cartilage. According to a Pearson correlation study, cellular senescence-related genes, including MAP2K1 and ABL1, were highly correlated with PTP1B expression levels in senescent chondrocytes. Furthermore, in vitro tests confirmed that PTP1B knockdown slowed cartilage degradation and prevented chondrocyte senescence in OA. In conclusion, we showed that PTP1B knockdown prevented the senescence of chondrocytes and prevented cartilage degradation in OA. These findings offer a fresh perspective on the pathophysiology of OA, opening up new avenues for OA clinical diagnosis and targeted treatment.

9.
Cancer Innov ; 3(4): e124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948251

ABSTRACT

Background: Increased glycolytic activity and lactate production are characteristic features of triple-negative breast cancer (TNBC). The aim of this study was to determine whether a subset of lactate-responsive genes (LRGs) could be used to classify TNBC subtypes and predict patient outcomes. Methods: Lactate levels were initially measured in different breast cancer (BC) cell types. Subsequently, MDA-MB-231 cells treated with 2-Deoxy-d-glucose or l-lactate were subjected to RNA sequencing (RNA-seq). The gene set variation analysis algorithm was utilized to calculate the lactate-responsive score, conduct a differential analysis, and establish an association with the extent of immune infiltration. Consensus clustering was then employed to classify TNBC patients. Tumor immune dysfunction and exclusion, cibersort, single-sample gene set enrichment analysis, and EPIC, were used to compare the tumor-infiltrating immune cells between TNBC subtypes and predict the response to immunotherapy. Furthermore, a prognostic model was developed by combining 98 machine learning algorithms, to assess the predictive significance of the LRG signature. The predictive value of immune infiltration and the immunotherapy response was also assessed. Finally, the association between lactate and various anticancer drugs was examined based on expression profile similarity principles. Results: We found that the lactate levels of TNBC cells were significantly higher than those of other BC cell lines. Through RNA-seq, we identified 14 differentially expressed LRGs in TNBC cells under varying lactate levels. Notably, this LRG signature was associated with interleukin-17 signaling pathway dysregulation, suggesting a link between lactate metabolism and immune impairment. Furthermore, the LRG signature was used to categorize TNBC into two distinct subtypes, whereby Subtype A was characterized by immunosuppression, whereas Subtype B was characterized by immune activation. Conclusion: We identified an LRG signature in TNBC, which could be used to predict the prognosis of patients with TNBC and gauge their response to immunotherapy. Our findings may help guide the precision treatment of patients with TNBC.

10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 619-629, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948275

ABSTRACT

Objective: Based on the secreted frizzled-related protein 2 (SFRP2)-Wnt/ß-catenin signaling pathway, this study explored the effect and mechanism of Cuiru Keli (CRKL) in the treatment of postpartum hypogalactia. Methods: A rat model of postpartum hypogalactia was established by gavaging 2 mL of 1.6 mg/mL bromocriptine mesylate to female rats on the third day after delivery. Female rats with a delivery time difference of less than 48 hours were selected and randomly assigned to 7 groups, including a normal group (without any modeling or medication), a model group, a CRKL low-dose group of model group model rats receiving CRKL at the dose of 3 g/kg, a CRKL medium-dose group of model rats receiving CRKL at the dose of 6 g/kg, a CRKL high-dose group of model rats receiving CRKL at the dose of 9 g/kg, a positive drug group of model rats receiving domperidone at the dose of 3 mg/kg, and a negative control (NC) group of model rats receiving normal saline. Each group contained 6 rats. Except for the normal and model groups, the remaining 5 groups were continuously administered with the respective intervention drugs at the specified doses by gavage once a day for 10 days. Changes in the total litter mass of the offspring in the 7 groups within 10 days were measured, and HE staining was performed to identify pathological changes in the mammary tissue (MT). Six groups of rats (excluding the positive control group) were used to observe the pathological changes of eosinophils in pituitary tissue. ELISA was performed to determine the content of prolactin (PRL) in serum, immunohistochemical staining was used to determine the expression of prolactin receptor (PRLR) in MT, and RT-qPCR was used to determine the mRNA expression of genes related to lactation in MT. Network pharmacology and molecular docking were used to study the therapeutic effect and mechanism of CRKL on postpartum hypogalactia, particularly whether it acted through the SFRP2-Wnt/ß-catenin signaling pathway. The mechanism of CRKL treatment was further validated by detecting mRNA (RT-qPCR) and protein expression (Western blot) of related pathway genes. Cell experiments were conducted using primary culture rat mammary epithelial cells (RMEC) from rat MT. RMEC were divided into four groups, including a normal group (primary culture RMEC, untreated), SFRP2 overexpression group (primary cultured RMEC treated with SFRP2 overexpression vector), SFRP2 overexpression+CRKL group (receiving treatment for SFRP2 overexpression group plus 10% drug-containing serum), and negative control group (primary culture RMEC treated with empty vector). The effect of CRKL on the expression of lactation-related genes FASN, CSN2, and GLUT1 mRNA after SFRP2 overexpression was detected by RT-qPCR. Results: In this study, CRKL was administered at a dose of 3 g/kg in the CRKL low-dose group, 6 g/kg in the medium-dose group, and 9 g/kg in the high-dose group (P<0.05 or P<0.01). Compared with the model group, CRKL at all doses significantly increased the total litter weight gain of the offsprings within 10 days (P<0.05 or P<0.01), and effectively increased lactation (P<0.01), the area of mammary lobules, and the size and filling of acinar cavities. CRKL at all doses also increased the number of eosinophils that secreted PRL in the pituitary gland of the postpartum hypogalactia rat model, and increased the content of PRL in the serum (P<0.05 or P<0.01). CRKL promoted the secretion and expression of PRL in postpartum hypogalactic model rats. In addition, it significantly promoted the expression of genes related to milk fat, milk protein, and lactose synthesis in MT (P<0.05 or P<0.01). Network pharmacology predicted that the Wnt signaling pathway might be a key pathway for CRKL in treating postpartum hypogalactia. The molecular docking results showed that related chemical components in CRKL had good binding ability with CCND1 and SFRP2. Compared with the model group, CRKL at all doses inhibited the expression of SFRP2 gene in vivo (P<0.01) and activated the mRNA and protein expression of CCND1 and c-Myc in the Wnt/ß-catenin signaling pathway in MT (P<0.05 or P<0.01). Cell experiments showed that, compared to the normal group, SFRP2 overexpression reduced the mRNA expression of milk synthesis-related genes FASN, CSN2, and GLUT1 in RMEC (P<0.01). The CCK8 results indicated that 10% of the drug-containing serum was the effective concentration administered to cells (P<0.01). After administering drug-containing serum, the expression of the lactation-related genes FASN, CSN2, and GLUT1 were up-regulated (compared with the SFRP2 overexpression group, P<0.01). Conclusion: CRKL alleviates postpartum hypogalactia through the SFRP2-Wnt/ß-catenin signaling pathway. SFRP2 might be a potential new target for the diagnosis and treatment of postpartum hypogalactia. This reveals a new mechanism of CRKL in treating postpartum hypogalactia and promotes its clinical application.


Subject(s)
Drugs, Chinese Herbal , Postpartum Period , Wnt Signaling Pathway , Animals , Female , Rats , Wnt Signaling Pathway/drug effects , Drugs, Chinese Herbal/pharmacology , Postpartum Period/metabolism , Rats, Sprague-Dawley , Pregnancy , beta Catenin/metabolism , beta Catenin/genetics
11.
Nat Commun ; 15(1): 5513, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951497

ABSTRACT

The second-order nonlinear Hall effect (NLHE) in non-centrosymmetric materials has recently drawn intense interest, since its inherent rectification could enable various device applications such as energy harvesting and wireless charging. However, previously reported NLHE systems normally suffer from relatively small Hall voltage outputs and/or low working temperatures. In this study, we report the observation of a pronounced NLHE in tellurium (Te) thin flakes at room temperature. Benefiting from the semiconductor nature of Te, the obtained nonlinear response can be readily enhanced through electrostatic gating, leading to a second-harmonic output at 300 K up to 2.8 mV. By utilizing such a giant NLHE, we further demonstrate the potential of Te as a wireless Hall rectifier within the radiofrequency range, which is manifested by the remarkable and tunable rectification effect also at room temperature. Extrinsic scattering is then revealed to be the dominant mechanism for the NLHE in Te, with symmetry breaking on the surface playing a key role. As a simple elemental semiconductor, Te provides an appealing platform to advance our understanding of nonlinear transport in solids and to develop NLHE-based electronic devices.

12.
Small ; : e2404347, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958084

ABSTRACT

Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.

14.
Mol Imaging Radionucl Ther ; 33(2): 115-117, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38949490

ABSTRACT

In a 55-year-old woman with sigmoid colon cancer, a subcutaneous mass in the left lower abdomen was incidentally found and gradually enlarged. For further diagnosis and staging, an 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scan was performed, which revealed a subcutaneous mass in the left lower abdomen with mild uptake of 18F-FDG, suggesting the possibility of metastasis. However, post-surgery and pathological confirmation, this mass was diagnosed as a drain-site hernia containing fallopian tube fimbria, which is extremely rare but should be considered in the differential diagnosis of subcutaneous mass in the lower abdomen.

15.
Article in English | MEDLINE | ID: mdl-38970598

ABSTRACT

BACKGROUND: Left bundle branch area pacing includes left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP), which is effective in patients with dyssynchronous heart failure (DHF). However, the basic mechanisms are unknown. OBJECTIVES: This study aimed to compare LBBP with LVSP and explore potential mechanisms underlying the better clinical outcomes of LBBP. METHODS: A total of 24 beagles were assigned to the following groups: 1) control group; 2) DHF group, left bundle branch ablation followed by 6 weeks of AOO pacing at 200 ppm; 3) LBBP group, DHF for 3 weeks followed by 3 weeks of DOO pacing at 200 ppm; and 4) LVSP with the same interventions in the LBBP group. Metrics of electrocardiogram, echocardiography, hemodynamics, and expression of left ventricular proteins were evaluated. RESULTS: Compared with LVSP, LBBP had better peak strain dispersion (44.67 ± 1.75 ms vs 55.50 ± 4.85 ms; P < 0.001) and hemodynamic effect (dP/dtmax improvement: 27.16% ± 7.79% vs 11.37% ± 4.73%; P < 0.001), whereas no significant differences in cardiac function were shown. The altered expressions of proteins in the lateral wall vs septum in the DHF group were partially reversed by LBBP and LVSP, which was associated with the contraction and adhesion process, separately. CONCLUSIONS: The animal study demonstrated that LBBP offered better mechanical synchrony and improved hemodynamics than LVSP, which might be explained by the reversed expression of contraction proteins. These results supported the potential superiority of left bundle branch area pacing with the capture of the conduction system in DHF model.

16.
PeerJ Comput Sci ; 10: e2167, 2024.
Article in English | MEDLINE | ID: mdl-38983239

ABSTRACT

Adaptive gradient algorithms have been successfully used in deep learning. Previous work reveals that adaptive gradient algorithms mainly borrow the moving average idea of heavy ball acceleration to estimate the first- and second-order moments of the gradient for accelerating convergence. However, Nesterov acceleration which uses the gradient at extrapolation point can achieve a faster convergence speed than heavy ball acceleration in theory. In this article, a new optimization algorithm which combines adaptive gradient algorithm with Nesterov acceleration by using a look-ahead scheme, called NALA, is proposed for deep learning. NALA iteratively updates two sets of weights, i.e., the 'fast weights' in its inner loop and the 'slow weights' in its outer loop. Concretely, NALA first updates the fast weights k times using Adam optimizer in the inner loop, and then updates the slow weights once in the direction of Nesterov's Accelerated Gradient (NAG) in the outer loop. We compare NALA with several popular optimization algorithms on a range of image classification tasks on public datasets. The experimental results show that NALA can achieve faster convergence and higher accuracy than other popular optimization algorithms.

17.
Physiol Plant ; 176(4): e14444, 2024.
Article in English | MEDLINE | ID: mdl-39005134

ABSTRACT

Bamboo, renowned as the fastest-growing plant globally, matures within an astonishingly short period of 40-50 days from shoots, reaching heights of 10-20 meters. Moreover, it can be harvested for various uses within 3-5 years. Bamboo exhibits exceptional mechanical properties, characterized by high hardness and flexibility, largely attributed to its lignin content. Phenylalanine ammonia-lyase (PAL) catalyzes the crucial initial step in lignin biosynthesis, but its precise role in bamboo lignification processes remains elusive. Thus, elucidating the functions of PAL genes in bamboo lignification processes is imperative for understanding its rapid growth and mechanical strength. Here, we systematically identified and classified PAL genes in Moso bamboo, ensuring nomenclature consistency across prior studies. Subsequently, we evaluated PAL gene expression profiles using publicly available transcriptome data. The downregulation of PePALs expression in Moso bamboo through in planta gene editing resulted in a decrease in PAL activity and a subsequent reduction in lignin content. In contrast, overexpression of PePAL led to enhanced PAL activity and an increase in lignin content. These findings highlight the critical role of PAL in the lignin biosynthesis process of Moso bamboo, which will help to unravel the mechanism underpinning bamboo's rapid growth and mechanical strength, with a specific emphasis on elucidating the functions of PAL genes.


Subject(s)
Gene Expression Regulation, Plant , Lignin , Phenylalanine Ammonia-Lyase , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Lignin/biosynthesis , Lignin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sasa/genetics , Sasa/metabolism , Sasa/enzymology
18.
Nat Commun ; 15(1): 5849, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992001

ABSTRACT

The effective isolation of rare target cells, such as circulating tumor cells, from whole blood is still challenging due to the lack of a capturing surface with strong target-binding affinity and non-target-cell resistance. Here we present a solution leveraging the flexibility of bacterial virus (phage) nanofibers with their sidewalls displaying target circulating tumor cell-specific aptamers and their ends tethered to magnetic beads. Such flexible phages, with low stiffness and Young's modulus, can twist and adapt to recognize the cell receptors, energetically enhancing target cell capturing and entropically discouraging non-target cells (white blood cells) adsorption. The magnetic beads with flexible phages can isolate and count target cells with significant increase in cell affinity and reduction in non-target cell absorption compared to magnetic beads having rigid phages. This differentiates breast cancer patients and healthy donors, with impressive area under the curve (0.991) at the optimal detection threshold (>4 target cells mL-1). Immunostaining of captured circulating tumor cells precisely determines breast cancer subtypes with a diagnostic accuracy of 91.07%. Our study reveals the power of viral mechanical attributes in designing surfaces with superior target binding and non-target anti-fouling.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/virology , Female , Aptamers, Nucleotide/metabolism , Nanofibers/chemistry , Cell Line, Tumor , Bacteriophages/genetics
19.
Medicine (Baltimore) ; 103(28): e38792, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996162

ABSTRACT

RATIONALE: Ichthyosis uteri is a rare pathological condition characterized by the replacement of the endometrial lining by stratified squamous epithelium. Yet its occurrence with endometrial adenocarcinoma is very rare. PATIENT CONCERNS: A 68-year-old woman has been experiencing sporadic, minor vaginal hemorrhages for a few months. The gynecological evaluation revealed a uterine enlargement and imaging demonstrated an irregular mass within the uterus. DIAGNOSIS: Endometrial adenocarcinoma with transitional cell differentiation; ichthyosis uteri with dysplasia. INTERVENTIONS: Radical hysterectomy with pelvic lymphadenectomy was performed followed by postoperative radiotherapy. OUTCOMES: Postoperative follow-up at 8 months showed a favorable outcome without signs of recurrence and metastasis. LESSONS: Adequate pathological sampling is crucial to identifying the accompanying lesions of ichthyosis uteri. Finding molecular alterations in various pathological morphologies is important to understand the evolution of disease.


Subject(s)
Adenocarcinoma , Endometrial Neoplasms , Hysterectomy , Ichthyosis , Humans , Female , Aged , Endometrial Neoplasms/pathology , Endometrial Neoplasms/complications , Endometrial Neoplasms/surgery , Adenocarcinoma/pathology , Adenocarcinoma/complications , Adenocarcinoma/surgery , Ichthyosis/pathology , Ichthyosis/complications , Uterus/pathology
20.
CNS Neurosci Ther ; 30(7): e14886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072940

ABSTRACT

BACKGROUND: Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS: Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS: Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS: These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.


Subject(s)
Antioxidants , Hydrogen Peroxide , Neurons , Oxidative Stress , Ubiquinone , Animals , Oxidative Stress/drug effects , Mice , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Antioxidants/pharmacology , Hydrogen Peroxide/toxicity , Neurons/drug effects , Neurons/pathology , Cell Line, Tumor , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Survival/drug effects , Cell Survival/physiology , tau Proteins/metabolism , Neuroprotective Agents/pharmacology , Galactose/toxicity , Drug Therapy, Combination
SELECTION OF CITATIONS
SEARCH DETAIL