Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.500
Filter
1.
J Bone Miner Res ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836494

ABSTRACT

Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in three stages of injury repair (inflammatory, reparative, and remodeling) in two commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.


Accumulating evidence has shown that, across organs systems, peripheral nerves regulate the process of tissue repair and regeneration. This is particularly relevant in the context of musculoskeletal injuries such as those affecting the bone and tendon. The question then arises: what is the function of peripheral innervation in the repair of bone and tendon injuries? This review offers an in-depth look at the ways in which nerves regulate the healing of bone and tendon injuries at various stages of recovery. A deeper comprehension of the influence of nerves on the repair of these tissues could pave the way for the development of future therapeutic strategies for tissue healing.

2.
ChemSusChem ; : e202400977, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831717

ABSTRACT

Electrocatalytic water splitting shows great potential for producing clean and green hydrogen, but it is hindered by slow reaction kinetics. Advanced electrocatalysts are needed to lower the energy barriers. The establishment of built-in electric fields (BIEF) in heterointerfaces has been found to be beneficial for speeding up electron transfer, increasing electrical conductivity, adjusting the local reaction environment, and optimizing the chemisorption energy with intermediates. Engineering and modifying the BIEF in heterojunctions offer significant opportunities to enhance the electronic properties of catalysts, thus improving reaction kinetics. This comprehensive review focuses on the latest advances in BIEF engineering in heterojunction catalysts for efficient water electrolysis. It highlights the fundamentals, engineering, modification, characterization, and application of BIEF in electrocatalytic water splitting. The review also discusses the challenges and future prospects of BIEF engineering. Overall, this review provides a thorough examination of BIEF engineering for the next generation of water electrolysis devices.

3.
J Neuroinflammation ; 21(1): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835057

ABSTRACT

BACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mice, Inbred C57BL , Animals , Mice , Male , Neurological Rehabilitation/methods , Prevotella , Gastrointestinal Microbiome/physiology , Phosphatidylinositol 3-Kinases/metabolism
4.
Adv Mater ; : e2312908, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843480

ABSTRACT

The emergence of solid-state battery technology presents a potential solution to the dissolution challenges of high-capacity small molecule quinone redox systems. Nonetheless, the successful integration of argyrodite-type Li6PS5Cl, the most promising solid-state electrolyte system, and quinone redox systems remains elusive due to their inherent reactivity. Here, a library of quinone derivatives is selected as model electrode materials to ascertain the critical descriptors governing the (electro)chemical compatibility and subsequently the performances of Li6PS5Cl-based solid-state organic lithium metal batteries (LMBs). Compatibility is attained if the lowest unoccupied molecular orbital level of the quinone derivative is sufficiently higher than the highest occupied molecular orbital level of Li6PS5Cl. The energy difference is demonstrated to be critical in ensuring chemical compatibility during composite electrode preparation and enable high-efficiency operation of solid-state organic LMBs. Considering these findings, a general principle is proposed for the selection of quinone derivatives to be integrated with Li6PS5Cl, and two solid-state organic LMBs, based on 2,5-diamino-1,4-benzoquinone and 2,3,5,6-tetraamino-1,4-benzoquinone, are successfully developed and tested for the first time. Validating critical factors for the design of organic battery electrode materials is expected to pave the way for advancing the development of high-efficiency and long cycle life solid-state organic batteries based on sulfides electrolytes.

5.
Elife ; 122024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865175

ABSTRACT

Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.


Chronic myeloid leukemia (CML for short) accounts for about 15% of all blood cancers diagnosed in adults in the United States. The condition is characterized by the overproduction of immature immune cells that interfere with proper blood function. It is linked to a gene recombination (a type of mutation) that leads to white blood cells producing an abnormal 'BCR-ABL' enzyme which is always switched on. In turn, this overactive protein causes the cells to live longer and divide uncontrollably. Some of the most effective drugs available to control the disease today work by blocking the activity of BCR-ABL. Yet certain patients can become resistant to these treatments over time, causing them to relapse. Other approaches are therefore needed to manage this disease; in particular, a promising avenue of research consists in exploring whether it is possible to reduce the amount of the enzyme present in diseased cells. As part of this effort, Zhao, Dai, Li, Zhang et al. focused on RAPSYN, a scaffolding protein previously unknown in CML cells. In other tissues, it has recently been shown to participate in neddylation ­ a process by which proteins receive certain chemical 'tags' that change the way they behave. The experiments revealed that, compared to healthy volunteers, RAPSYN was present at much higher levels in the white blood cells of CML patients. Experimentally lowering the amount of RAPSYN in CML cells led these to divide less quickly ­ both in a dish and when injected in mice, while also being linked to decreased levels of BCR-ABL. Additional biochemical experiments indicated that RAPSYN sticks with BCR-ABL to add chemical 'tags' that protect the abnormal protein against degradation, therefore increasing its overall levels. Finally, the team showed that SRC, an enzyme often dysregulated in emerging cancers, can activate RAPSYN's ability to conduct neddylation; such mechanism could promote BCR-ABL stabilization and, in turn, disease progression. Taken together, these experiments indicate a new way by which BCR-ABL levels are controlled. Future studies should investigate whether RAPSYN also stabilizes BCR-ABL in patients whose leukemias have become resistant to existing drugs. Eventually, RAPSYN may offer a new target for overcoming drug-resistance in CML patients.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Animals , Mice , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Cell Line, Tumor , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Phytother Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863408

ABSTRACT

Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1ß levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.

7.
Nat Commun ; 15(1): 3874, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719826

ABSTRACT

The "terminal hydroxyl group anchoring mechanism" has been studied on metal oxides (Al2O3, CeO2) as well as a variety of noble and transition metals (Ag, Pt, Pd, Cu, Ni, Fe, Mn, and Co) in a number of generalized studies, but there is still a gap in how to regulate the content of terminal hydroxyl groups to influence the dispersion of the active species and thus to achieve optimal catalytic performance. Herein, we utilized AlOOH as a precursor for γ-Al2O3 and induced the transformation of the exposed crystal face of γ-Al2O3 from (110) to (100) by controlling the calcination temperature to generate more terminal hydroxyl groups to anchor Ag species. Experimental results combined with AIMD and DFT show that temperature can drive the atomic rearrangement on the (110) crystal face, thereby forming a structure similar to the atomic arrangement of the (100) crystal face. This resulted in the formation of more terminal hydroxyl groups during the high-temperature calcination of the support (Al-900), which can capture Ag species to form single-atom dispersions, and ultimately develop a stable and efficient single-atom Ag-based catalyst.

8.
Sci Rep ; 14(1): 11365, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762656

ABSTRACT

This network meta-analysis (NMA) aimed to compare the efficacy of five non-pharmacological interventions, including exercise intervention (EI), nutritional intervention (NI), respiratory intervention (RI), psychological intervention (PSI), and integrated physical intervention (IPI), on functional status, quality of life, muscle strength, pulmonary function, and safety in patients with amyotrophic lateral sclerosis (ALS). We searched nine databases, PubMed, Cochrane, Embase, Scopus, Web of Science, CNKI, CBM, WFPD, and CSTJ, for randomized controlled trials of ALS patients. The primary outcome was the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score. Secondary outcomes were the McGill Quality of Life Questionnaire (McGill-QoL), Medical Research Council (MRC)-sum score, Forced Vital Capacity (FVC), and Fatigue Severity Scale (FSS) score. This NMA was conducted using random-effect models to calculate the standard mean difference (SMD) and 95% confidence interval (CI). All types of supplemental interventions had some benefit for patients with ALS. EI had a beneficial effect on the ALSFRS-R score (SMD: 1.01; 95% CI 0.50-1.51), FVC (SMD: 0.78; 95% CI 0.02-1.55), McGill-QoL (SMD: 0.71 95% CI 0.33-1.08), and MRC (SMD: 1.11; 95% CI 0.08-2.14). RI had a beneficial effect on the ALSFRS-R score (SMD: 0.83 95% CI 0.12-1.55). IPI had a beneficial effect on the ALSFRS-R score (SMD: 0.65 95% CI 0.06-1.24). NI had a beneficial effect on the McGill-QoL (SMD: 0.63 95% CI 0.02-1.23). The current study findings support a multimodal intervention strategy with an emphasis on EI for slowing disease progression in patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Network Meta-Analysis , Quality of Life , Randomized Controlled Trials as Topic , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/physiopathology , Humans , Exercise Therapy/methods , Treatment Outcome , Muscle Strength
9.
Pancreas ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696448

ABSTRACT

OBJECTIVES: Proximal migration is one of the complications after pancreatic duct stenting. This study aimed to determine the incidence of proximal migration and to analyze the rescue methods. METHODS: A search was performed in MEDLINE/EMBASE database. The literatures included were reviewed and analyzed. Retrieval tools were classified into 3 classes: Class A works by indirectly contacting the outer surface of the stent. Class B works by directly contacting the outer surface. Class C works by directly contacting the inner surface. RESULTS: 416 literatures were retrieved from 1983 to 2021. 15 literatures were included. The incidence of proximal migration of pancreatic stents was 4.7% (106/2246). The success rate of endotherapy was 86.6% (214/247), and the surgical conversion rate of it was 9.3%. Among the 214 cases in which the displaced stents were successfully removed under endoscopy, 49 cases (22.9%) used Class A methods, 154 cases (72.0%) used Class B methods and 11 cases (5.1%) used Class C methods. The overall rate of postoperative complication was 12.1%, including postprocedure pancreatitis (9.1%, 18/247), followed by bleeding (1.5%), perforation (1.0%) and biliary infection (0.5%). CONCLUSIONS: Endoscopy is an effective method for the treatment of proximal displacement of pancreatic stents with acceptable complication rate.

10.
Article in English | MEDLINE | ID: mdl-38753528

ABSTRACT

OBJECTIVES: Detection of early neoplastic lesions is crucial for improving the survival rates of patients with gastric cancer. Optical enhancement mode 2 is a new image-enhanced endoscopic technique that offers bright images and can improve the visibility of neoplastic lesions. This study aimed to compare the detection of neoplastic lesions with optical enhancement mode 2 and white-light imaging (WLI) in a high-risk population. METHODS: In this prospective multicenter randomized controlled trial, patients were randomly assigned to optical enhancement mode 2 or WLI groups. Detection of suspicious neoplastic lesions during the examinations was recorded, and pathological diagnoses served as the gold standard. RESULTS: A total of 1211 and 1219 individuals were included in the optical enhancement mode 2 and WLI groups, respectively. The detection rate of neoplastic lesions was significantly higher in the optical enhancement mode 2 group (5.1% vs. 1.9%; risk ratio, 2.656 [95% confidence interval, 1.630-4.330]; p < 0.001). The detection rate of neoplastic lesions with an atrophic gastritis background was significantly higher in the optical enhancement mode 2 group (8.6% vs. 2.6%, p < 0.001). The optical enhancement mode 2 group also had a higher detection rate among endoscopists with different experiences. CONCLUSIONS: Optical enhancement mode 2 was more effective than WLI for detecting neoplastic lesions in the stomach, and can serve as a new method for screening early gastric cancer in clinical practice. CLINICAL REGISTRY: United States National Library of Medicine (https://www. CLINICALTRIALS: gov), ID: NCT040720521.

11.
Scand J Gastroenterol ; : 1-15, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742797

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) continues to play a substantial role in cancer-related morbidity and mortality, largely owing to its pronounced tumor heterogeneity and propensity for recurrence. This underscores the pressing need for in-depth examination of its highly malignant mechanisms. Annexin A5 (ANXA5), recognized as a hallmark tumor protein, has emerged as a focal point of interest because of its ambiguous function and mechanism in HCC prognosis. This study aimed to provide a comprehensive understanding of the role of ANXA5 in the malignant progression of human HCC cells by employing an integrative approach that combines conventional experimental methods with RNA sequencing. METHODS: Differences in ANXA5 expression between HCC tissues and corresponding nontumor tissues were evaluated using immunofluorescence (n = 25). Correlation analysis was subsequently performed to assess the association between ANXA5 expression and clinicopathological features (n = 65). The role of ANXA5 in human HCC cell lines with ANXA5 gene knockout and overexpression was explored in vitro using migration and invasion assays and Ki-67 indices and in vivo based on node mice xenograft model. A tube formation assay using human umbilical vein endothelial cells (HUVECs) was conducted to demonstrate the angiogenic effects of ANXA5 in HCC. Single-cell and bulk RNA sequencing was used to further investigate the underlying mechanisms involved. RESULTS: This study revealed that ANXA5 is highly expressed in patients with HCC and correlates with poor prognosis. Assays for migration, invasion, and proliferation based on ANXA5 gene knockout and overexpression systems in human HCC cell lines have demonstrated that ANXA5 enhances HCC malignancy in vitro and in vivo. Tube formation assays of HUVECs indicated that ANXA5 facilitates angiogenesis and recruits endothelial cells to HCC cells. Single-cell and bulk RNA sequencing data analysis further confirmed that ANXA5 expression in HCC is associated with hepatocyte metabolism, immune response activation, and various oncogenic signaling pathways. CONCLUSIONS: This study revealed a meaningful association between elevated ANXA5 expression in tumor tissues and an unfavorable prognosis in patients with HCC. In addition, ANXA5 promotes HCC malignancy by promoting invasion and angiogenesis. Thus, ANXA5 has emerged as a promising therapeutic target for HCC and has the potential to improve patient outcomes.

13.
BMC Vet Res ; 20(1): 207, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760783

ABSTRACT

BACKGROUND: Although ultrasonography (US) has been widely used in the diagnosis of human diseases to monitor the progress of cystic echinococcosis (CE) control, the screening method for hepatic CE in sheep flocks requires adjustment. In this study, we used a US scanner to screen sheep flocks and evaluated the efficacy of dosing dogs once a year with praziquantel for 7 years from 2014 to 2021. METHODS: All sheep in the three flocks were screened using an ultrasound scanner in 2014 and compared with the prevalence of infection in 2021 in Bayinbuluke, Xinjiang, China. Sheep age was determined using incisor teeth. Cyst activity and calcification were determined using US images. The dogs were dewormed with praziquantel once a year to control echinococcosis in the community. RESULTS: Three flocks had 968 sheep in 2014, with 13.22%, 22.62%, 18.7%, 27.27%, 11.88%, and 6.3% of sheep aged 1, 2, 3, 4, 5, and ≥ 6 years old, respectively. US scanning revealed that the overall CE prevalence was 38.43% (372/968), with active cysts and calcified cysts present in 9.40% (91/968) and 29.02% (281/968) of the sheep, respectively. For the young sheep aged 1 and 2 years, the prevalence of active and calcified cysts was: 1.56% and 0.91%, and 10.94% and 18.72%, respectively. Approximately 15.15% and 16.52% of the 4- and 5-year-old sheep, respectively, harbored active cysts. There was no significant difference in the infection rates of sheep between 2014 and 2021 (P > 0.05). CONCLUSIONS: US is a practical tool for the field screening of CE in sheep flocks. One-third of the sheep population in the flocks was 1-2 years old, and these sheep played a very limited role in CE transmission, as most of the cysts were calcified. Old sheep, especially culled aged sheep, play a key role in the transmission of CE. Dosing dogs once a year did not affect echinococcosis control.


Subject(s)
Echinococcosis, Hepatic , Sheep Diseases , Ultrasonography , Animals , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/diagnostic imaging , Sheep , China/epidemiology , Ultrasonography/veterinary , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/epidemiology , Echinococcosis, Hepatic/diagnostic imaging , Prevalence , Dogs , Praziquantel/therapeutic use , Anthelmintics/therapeutic use , Female
14.
Brain Res ; 1839: 149010, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763503

ABSTRACT

OBJECTIVE: Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS: Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS: SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION: EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.

15.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755662

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Actinobacillus pleuropneumoniae/drug effects , Flavanones/therapeutic use , Flavanones/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , NF-E2-Related Factor 2/metabolism , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Mice , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Female , Membrane Proteins , Heme Oxygenase-1
16.
Small Methods ; : e2400172, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807542

ABSTRACT

Delicately manipulating nanomorphology is recognized as a vital and effective approach to enhancing the performance and stability of organic solar cells (OSCs). However, the complete removal of solvent additives with high boiling points is typically necessary to maintain the operational stability of the device. In this study, two commercially available organic intermediates, namely thieno[3,2-b]thiophene (TT) and 3,6-dibromothieno[3,2-b]thiophene (TTB) are introduced, as solid additives in OSCs. The theoretical simulations and experimental results indicate that TT and TTB may exhibit stronger intermolecular interactions with the acceptor Y6 and donor PM6, respectively. This suggests that the solid additives (SAs) can selectively intercalate between Y6 and PM6 molecules, thereby improving the packing order and crystallinity. As a result, the TT-treated PM6:Y6 system exhibits a favorable morphology, improved charge carrier mobility, and minimal charge recombination loss. These characteristics contribute to an impressive efficiency of 17.75%. Furthermore, the system demonstrates exceptional thermal stability (T80 > 2800 h at 65 °C) and outstanding photostability. The universal applicability of TT treatment is confirmed in OSCs employing D18:L8-BO, achieving a significantly higher PCE of 18.3%. These findings underscore the importance of using appropriate solid additives to optimize the blend morphology of OSCs, thereby improving photovoltaic performance and thermal stability.

17.
Front Bioeng Biotechnol ; 12: 1368818, 2024.
Article in English | MEDLINE | ID: mdl-38807650

ABSTRACT

Objective: We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods: Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results: This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion: Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.

18.
Oncol Lett ; 28(1): 318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807680

ABSTRACT

The present study compared the efficacy and safety of regorafenib plus programmed death-1 inhibitors (R-P) with regorafenib monotherapy as second-line therapies for advanced hepatocellular carcinoma (HCC). A systematic search of relevant literature published in PubMed, Embase, Web of Science and Cochrane Library databases until October 2023 was conducted. Two authors independently performed data extraction and screening using standardized protocols. Stata/MP 17.0 was used for the meta-analysis to evaluate the impact of R-P treatment on major outcome indicators, including overall survival, progression-free survival (PFS), tumor response and adverse reactions, in patients with advanced HCC. The results indicated that five cohort studies involving 444 patients with advanced HCC were included. The results revealed that R-P treatment improved overall survival [hazard ratio (HR), 0.61; 95% confidence interval (CI) 0.48-0.77; I2=0.0%; P=0.663] and PFS (HR, 0.51; 95% CI 0.41-0.63; I2=17.5%; P=0.303). Additionally, it increased the objective response rate (risk ratio, 2.33; 95% CI, 1.49-3.64; I2=0.0%; P=0.994) and disease control rate (HR, 1.40; 95% CI, 1.20-1.63; I2=0.0%; P=0.892) compared with those of regorafenib. However, R-P treatment was associated with an increased incidence of adverse events, such as hypothyroidism, thrombocytopenia and rash, compared with that in regorafenib. In conclusion, R-P is superior to regorafenib monotherapy in terms of survival benefits and tumor response.

19.
Diabetol Metab Syndr ; 16(1): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812035

ABSTRACT

BACKGROUND: Myocardial injury after non-cardiac surgery (MINS) is a common and insidious postoperative complication. This study aimed to evaluate the relationship between the triglyceride-glucose index (TyG) and MINS in advanced-age patients. METHODS: We performed a single-center retrospective study including patients ≥ 65 years of age who underwent non-cardiac surgery. The relationship between TyG and MINS was investigated using univariate and multivariate logistic regression analyses. Multivariate logistic regression analysis involved three models: Model I adjusted for preoperative factors, Model II adjusted for surgery-related factors, and Model III adjusted for both preoperative and surgery-related factors. Propensity score matching (PSM) was used to reduce the confounding effects of covariates. Subgroup analyses were then performed to evaluate the relationship between TyG and MINS in various subsamples. RESULTS: A total of 7789 patients were studied, among whom 481 (6.2%) developed MINS. A cut-off value of TyG of 8.57 was determined using a receiver operating characteristic (ROC) curve to be associated with the best predictive performance. Participants with TyG ≥ 8.57 were at a higher risk of developing MINS than those with TyG < 8.57 [n = 273 (7.6%) vs. n = 208 (4.9%), respectively; p < 0.001]. The univariate analysis showed that TyG ≥ 8.57 was significantly associated with MINS in elderly patients [odds ratio (OR): 1.58; 95% confidence interval (95%CI): 1.32-1.91; p < 0.001)]. In multivariate logistic regression, adjustments were made for risk factors including age, sex, body mass index (BMI), hypertension, coronary heart disease, and duration of surgery, etc. The adjusted ORs for TyG ≥ 8.57 were 1.46 (95%CI: 1.17-1.82), p = 0.001; 1.46 (95%CI: 1.19-1.77), p < 0.001; and 1.43 (95%CI: 1.13-1.81), p = 0.003, in the three multivariate models, respectively. The relationship remained after PSM (adjusted OR: 1.35, 95% CI: 1.03-1.78, p = 0.029). Furthermore, the relationship between TyG and MINS remained in a number of subgroups in the sensitivity analyses, but not in participants with peripheral vascular stenosis. CONCLUSIONS: A preoperative high TyG (≥ 8.57) is associated with a higher risk of MINS in advanced-age patients undergoing non-cardiac surgery.

20.
J Hypertens ; 42(7): 1212-1225, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690877

ABSTRACT

BACKGROUND: Resistant hypertension is a severe phenotype in hypertension that may be driven by interactions between genetic and environmental factors. Specific changes in gut microbiota and metabolites have been shown to influence cardiovascular disease progression. However, microbial and metabolomic changes associated with resistant hypertension remain elusive. METHODS: In this study, the gut microbiome of 30 participants with resistant hypertension, 30 with controlled hypertension, and 30 nonhypertension was characterized using 16S rRNA amplicon sequencing. In addition, the serum metabolome of the same population was assessed by untargeted metabolomics. RESULTS: The alpha diversity of microbiome in the resistant hypertension decreased, and changes were also observed in the composition of the gut microbiota. The resistant hypertension group was characterized by elevated levels of Actinobacteitia and Proteobacteria. Twenty-three genera were found to have significantly different abundances between resistant hypertension and controlled hypertension, as well as 55 genera with significantly different abundances between resistant hypertension and nonhypertension. Compared with the controlled hypertension group, the genera Rothia and Sharpea in resistant hypertension were more abundant. Compared with the nonhypertension group, the genera Escherichia-Shigella , Lactobacillus , Enterococcus were more abundant. Untargeted metabolomics provided distinctly different serum metabolic profiles for the three groups and identified a range of differential metabolites. These metabolites were mainly associated with the pathway of glycerophospholipid metabolism. Furthermore, correlation analysis provided evidence of new interactions between gut microbiota and metabolites in the resistant hypertension. CONCLUSION: In conclusion, our study provides a comprehensive understanding of the resistant hypertension gut microbiota and metabolites, suggesting that treatment resistance in resistant hypertension patients may be related to the gut microbiota and serum metabolites.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Metabolome , Humans , Hypertension/microbiology , Male , Middle Aged , Female , Aged , Metabolomics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...