Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Respir Med ; 233: 107783, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39209127

ABSTRACT

RATIONALE AND OBJECTIVES: Computed tomography (CT) is commonly used and offers an additional viewpoint for evaluating extrapulmonary symptoms, disease severity, and muscle atrophy. This study assessed whether the pectoralis muscle area (PMA) and pectoralis muscle density (PMD) are lower in patients with chronic obstructive pulmonary disease (COPD) than in healthy controls and elucidated their relationships with these variables. MATERIALS AND METHODS: The participants were enrolled in the hospital outpatient clinic between October 2023 and May 2024. Information was obtained from questionnaires, lung function, and CT imaging findings. On full-inspiratory CT, the PMA and PMD were measured at the aortic arch level using predetermined attenuation ranges of -29 and 150 Hounsfield units. We observed lower PMA and PMD and evaluated their associations with lung function, respiratory symptoms, and CT imaging findings in patients with COPD. RESULTS: Overall, 120 participants were enrolled at baseline (60 healthy controls and 60 patients with COPD). PMA and PMD were lower with progressive airflow limitation severity in those with COPD. The degree of emphysema and air trapping, as well as lung function, were correlated with PMA and PMD (P < 0.05), although not with the COPD Assessment Test or modified Medical Research Council scores (P > 0.05). CONCLUSION: Participants with COPD had smaller PMA and PMD. These measurements were correlated with the severity of airflow limitation, lung function, emphysema, and air trapping, suggesting that these features of the pectoralis muscle obtained from CT are helpful in assessments of patients with COPD.


Subject(s)
Pectoralis Muscles , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/pathology , Pectoralis Muscles/diagnostic imaging , Pectoralis Muscles/pathology , Pectoralis Muscles/physiopathology , Case-Control Studies , Male , Tomography, X-Ray Computed/methods , Female , Aged , Middle Aged , Respiratory Function Tests
2.
Heliyon ; 9(11): e21398, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027913

ABSTRACT

As one of the modern transportation modes, the high-speed railway network system has been a robust part of the comprehensive transportation system in China. An important topic emerges the exploration and optimization of its structural organization and coordinated relationship with the regional development, including urban form, land use, and economy. Therefore, supported by the integration of geographical information system (GIS) and fractal theory, this paper aims to carry out an investigation and discussion on the structural characteristics, including intensity (density), complexity, nonstationarity, and heterogeneity of the high-speed railway network in China (HSRNC) from the perspective of the whole country and specific regions, i.e., urban agglomerations. Moreover, based on the time-series data of network mileage expansion and economic output analysis, this study aims to evaluate and characterize the coordinated relationships between network development and economic growth in the context of the nationwide area and urban agglomerations. This study aims to explore and promote the spatial structural organization and morphology of the high-speed railway network in China, thus improving the coordinated development with the regional economic growth, for giving a new perspective to the future planning and evolution of the high-speed railway network in China.

3.
Sci Total Environ ; 891: 164450, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37245821

ABSTRACT

High geogenic Mn groundwater is widespread around the world and has also proved to be harmful to human health, especially to the IQ of Children. The natural release of Mn from aquifer sediments in slightly reducing condition is believed to be the primary cause. However, there isn't enough evidence to prove that anthropogenic activities promote the reductive release of Mn. Here a Historical Petrochemical Waste Storage Site (HPWSS) was studied to evaluate its impact on groundwater quality. Significantly elevated Mn, as well as elevated TDS, anionic surfactants, and organic pollutants, were found in the shallow aquifer (9-15 m) groundwater compared to the surrounding area. The Mn was believed to be generated in-situ, while others are caused by anthropogenic pollution. The good correlations between Mn and NH4+, HCO3-, I, As, Co, V, Ti, respectively, showed the Mn mobilization was mainly attributed to the reductive dissolution of Mn oxides/hydroxides. The potential processes leading to this enhanced Mn release are discussed, including 1) the infiltration of high salinity water which solubilized sediment organic matter (OM); 2) the anionic surfactants that promoted the dissolution and mobilization of surface-derived organic pollutants as well as sediment OM. Any of these processes may have provided a C source to stimulate the microbial reduction of Mn oxides/hydroxides. This study showed the input of pollutants could change the redox and dissolution conditions of the vadose zone and aquifer, causing a secondary geogenic pollution risk in groundwater. Since Mn is easily mobilized in suboxic condition as well as its toxicity, the enhanced release due to anthropogenic perturbation merits more attention.

4.
Environ Sci Ecotechnol ; 15: 100243, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36896144

ABSTRACT

The potential release capacity of arsenic (As) from sediment was evaluated under a high level of exogenous organic matter (EOM) with both bioreactive and chemically reactive organic matters (OMs). The OMs were characterized by FI, HIX, BIX, and SUVA254 fluorescence indices showing the biological activities were kept at a high level during the experimental period. At the genus level, Fe/Mn/As-reducing bacteria (Geobacter, Pseudomonas, Bacillus, and Clostridium) and bacteria (Paenibacillus, Acidovorax, Delftia, and Sphingomonas) that can participate in metabolic transformation using EOM were identified. The reducing condition occurs which promoted As, Fe, and Mn releases at very high concentrations of OM. However, As release increased during the first 15-20 days, followed by a decline contributed by secondary iron precipitation. The degree of As release may be limited by the reactivity of Fe (hydro)oxides. The EOM infiltration enhances As and Mn releases in aqueous conditions causing the risk of groundwater pollution, which could occur in specific sites such as landfills, petrochemical sites, and managed aquifer recharge projects.

5.
Environ Sci Pollut Res Int ; 27(28): 34840-34861, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32638308

ABSTRACT

Understanding the formation of high fluoride (F-) groundwater in water-scarce northern China is critical for the sustainable development of the region. This study investigates the effects of F- enrichment in groundwater from seven typical regions of northern China, including Datong, Guide, Junggar, Yinchuan, Taiyuan, and Tarim basins and the North China Plain. A literature survey of 534 samples of selected regions showed that 45.13% of groundwater F- exceeded the 1.0 mg/L of Chinese drinking water guideline. Based on the geological background and hydrogeochemical analysis, in Datong and Yinchuan basins and part of the North China Plain, the main types of groundwater are soda water and controlling processes of F- enrichment are salinization, mineral dissolution, and desorption. In Taiyuan and Guide basins with Cl-Na water type, F- enrichment is mainly affected by salinization, cation exchange, and evaporation. The hydrogeochemical characteristics of high F- groundwater in Tarim and Junggar basins reflect the extent of salinization and weathering dissolution of minerals in groundwater. According to PCA, the contribution of salinization and mineral dissolution to F- enrichment is relatively high. Under the alkaline condition, groundwater with high Cl-, HCO3-, and Na+ concentration favors F- enrichment. Based on HCA, index clustering category I explains the influence of pH and buried depth on F- enrichment, and category II explains the effect of different ions. It is concluded that F- enrichment in groundwater is related to hydrogeochemical processes and hydrogeological conditions. The hydrogeochemical and alkaline conditions of groundwater are regulated by mineral dissolution, ion exchange, and evaporation, resulting in different degrees of F- enrichment.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Fluorides/analysis , Minerals
6.
Environ Int ; 137: 105532, 2020 04.
Article in English | MEDLINE | ID: mdl-32062435

ABSTRACT

Groundwater pollution risk assessment in the groundwater source field (GSF) is crucial to ensure groundwater quality safety. A systematic method of assessing groundwater pollution in the GSF was established by combining the numerical models of groundwater flow and solute transport in the vadose zone and aquifer. It is featured by revealing the paramount fate of contaminant from the surface to receptor "well (wells)" via the pathway of vadose zone and aquifers. The method was verified in the phreatic and semi-confined aquifers of a vital GSF, Beijing-Tianjin-Hebei region (BTHR) in China. Nitrate was selected as the model pollutant. The results indicated that the groundwater pollution risk of the phreatic aquifer was dominated by the mediate level (45.27%), and that the second semi-confined aquifer was mainly ranked as relatively low (30.29%) and mediate (38.17%) levels. The groundwater pollution risk maps of the two aquifers were similar. The high and relatively high risk areas were affected by the high intensities of groundwater pollution sources (GPSIs) or short distances from the pollution sources to the pumping well. The low and relatively low risk areas were controlled by low GPSIs and adequate attenuation and denitrification of nitrate in the aquifer. The groundwater pollution risk in the semi-confined aquifer was lower than that in the phreatic aquifer. The groundwater pollution risk mapping provides a valuable scientific reference for the groundwater pollution prevention and control with the focus on the "pollution source" and "groundwater source field". The proposed method can be further applied to the protections of the GSFs in the BTHR.


Subject(s)
Groundwater , Nitrates , Water Pollutants, Chemical , Beijing , China , Environmental Monitoring , Nitrates/analysis , Nitrates/toxicity , Risk Assessment
7.
Sci Total Environ ; 643: 967-993, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29960233

ABSTRACT

The sustainability of groundwater usage faces quality problem caused by anthropogenic activity as well as geogenic contamination. With varied climate zones, geomorphology and geological background, China faces a variety of geogenic contaminated groundwater (GCG) reported known as high TDS, Fe, Mn, As, F, I, NH4+, U, Cr and low I, Se, etc., may still exist some others not fully known yet. The problem of GCG is more significant in northern China due to extensive groundwater usage, arid climate and widespread Holocene strata. High salinity groundwater is mainly distributed in semi-arid/arid northwestern inland basins and coastal areas. Elevated Fe and Mn are frequently concomitant and controlled by redox potential, prevailing in the Sanjiang Plain, Yellow River Basin, and middle and lower reaches of the Yangtze River Basin. High As groundwater occurs in reducing aquifer is mainly distributed in the Yellow River, Yangtze River and Huai River Basins as well as the Songnen Plain and Xinjiang. Fluoride is characterized by its areal distribution in northern China in comparison with scatter occurrence in the south. The dissolution of F-bearing minerals as well as evaporation effect both contribute to elevated F. High iodine groundwater mainly distributed in the Yellow-Huai-Hai River Basin and low iodine prevailing in piedmont areas both pose health issues. Iodine is related to decomposition of organic matter (OC) as well as marine origin. Contributed by OC mineralization naturally-occurring NH4+ was found in reducing aquifers. The GCG triggers endemic disease in addition to reduce groundwater resource. The co-occurrence like high TDS and F, As and F are frequently observed posing major challenges for mitigation. Anthropogenic influence like abstraction and pollutant infiltration would alter groundwater flow and the redox condition causing the further evolution of GCG. Identification of GCG should be made in rural areas where private wells prevail to ensure resident's health.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Arsenic , China
8.
Environ Technol ; 39(22): 2873-2881, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28925326

ABSTRACT

The multi-layer enhanced groundwater remediation technology (MET) is an innovative platform that integrates physical chemistry, bioremediation, and phytoremediation technology to safely and effectively remediate ammonia nitrogen in groundwater. A nitrogen transformation model was established to study the mechanism of nitrogen transformation within ammonia nitrogen removal in the MET. The model considered organic nitrogen, ammonia nitrogen, and nitrate nitrogen as the variables, and ammonification, nitrification, denitrification, microbial assimilation, plant absorption, adsorption-desorption, and volatilization as the influencing factors. The unknown parameters of the model were obtained by fitting the data from a bench-scale experiment, and the results of the model validation and comparison showed that under the experimental initial conditions (the hydraulic load of the influent is 14.68 m3/(m2 d) and the concentration of the ammonia nitrogen is 25.0 mg/L) and after the device ran for 45d continuously, the simulated and measured average concentration values of ammonia nitrogen in the effluent were 1.701 mg/L and 1.775 m/L, respectively, and the relative deviation was 4.17%. The simulated and measured average concentration values of nitrate nitrogen in effluent were 11.474 mg/L and 11.244 m/L, respectively, and the relative deviation was 2.05%, and the total removal rate was 92.07%. Thus it can be seen that the predicted values of the nitrogen transformation model were in good agreement with the measured values, and the model could be applied to forecast the long-term remediation effects of nitrogen in groundwater by MET.


Subject(s)
Groundwater , Nitrogen , Ammonia , Denitrification , Nitrification
9.
Environ Sci Pollut Res Int ; 24(35): 27269-27276, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28965261

ABSTRACT

Landfill site is a significant source of groundwater pollution. To ensure that the groundwater contamination of landfills can be controlled and repaired scientifically, the identification of groundwater pollution process is needed. On the basis of biogeochemical process of leachate pollutants in the groundwater environment, a sensitive factor method for the identification of groundwater redox process from landfills was established in this research. The method encompasses four phases, including sensitive factors selection, redox zone characterization, weight calculation, and redox zone identification. In the sensitive factor index system employed here, five indicators involving dissolved oxygen (DO), nitrite, Fe2+, sulfide, and CO2 were selected. The boundary of each redox zones was determined by the quantitative method, and the weight of each indicator was calculated by combined weight method. This method was applied to a landfill site in the northeast of China. The result showed that there were five redox zones that appeared in pollution plume, including methanogenic zone (MGZ), sulfate reduction zone (SRZ), iron reduction zone (IRZ), nitrate reduction zone (NRZ), and oxygen reduction zone (ORZ). The results were consistent with the actual situation of the site. The sensitive factor method was scientific and effective to identify the groundwater redox process in landfill and can provide reference data related to investigation and remediation of groundwater pollution in landfill sites.


Subject(s)
Groundwater/chemistry , Waste Disposal Facilities , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Oxidation-Reduction
10.
Integr Environ Assess Manag ; 13(6): 1052-1059, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28577331

ABSTRACT

Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Pesticides/classification , Water Pollutants, Chemical/classification , Water Pollution, Chemical/statistics & numerical data , Agriculture , China , Pesticides/analysis , Water Pollutants, Chemical/analysis
11.
Environ Manage ; 58(6): 1046-1058, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27665617

ABSTRACT

Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.


Subject(s)
Groundwater/analysis , Hazardous Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , China , Cluster Analysis , Principal Component Analysis , Refuse Disposal/methods , Risk Assessment
12.
Sci Total Environ ; 563-564: 593-9, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27183515

ABSTRACT

The groundwater was sampled in a typical landfill area of the Northeast China. Coupled stable isotope and three dimensional excitation-emission matrix (3DEEM) were applied to dentify diffused NO3(-) inputs in the groundwater in this area. The results indicated that combined with the feature of groundwater hydrochemistry and three-dimensional fluorescence technology can effectively identify the nitrate pollution sources. The nitrate was derived from manure and sewage by δ(15)N and δ(18)O-NO3(-) values of groundwater in the different periods. The excitation-emission matrix fluorescence spectroscopy was further evidence of groundwater DOM mainly which comes from the landfill. The protein-like was very significant at the sampling points near the landfill (SPNL), but only fulvic acid-like appeared at downstream of the landfill groundwater sampling points (DLGSP) in the study area. Partial denitrification processes helped to attenuate nitrate concentration in anaerobic environment.


Subject(s)
Groundwater/analysis , Nitrates/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , China , Environmental Monitoring
13.
Environ Sci Pollut Res Int ; 23(9): 8741-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26805922

ABSTRACT

Water level (WL) changes are an important factor in the fate and transport of nitrogen in the saturated-unsaturated zone. In this study, the fate of nitrogen was investigated under simulated conditions of replenishment, runoff, and discharge. Three patterns of water level changes of ascent, stability, and descent were simulated under laboratory conditions to study nitrogen transport and transformation. Three columns (I, II, and III) were used to simulate the conditions of replenishment, steady water level, and discharge, respectively. The nitrate-nitrogen (NO3 (-)-N), nitrite-nitrogen (NO2 (-)-N), and ammonia-nitrogen (NH4 (+)-N) concentrations observed at different depths were compared among the three columns at 46.5 and 251.5 h. The results indicated that the NO3 (-)-N concentration decreased with time in both the saturated and unsaturated zones of the three columns (columns I, II, and III). The maximum decreasing concentrations of NO3 (-)-N in the three columns were 14.3, 37.97, and 38.17 mg/L, respectively. However, NH4 (+)-N in the saturated zone increased with time, whereas the NH4 (+)-N concentration decreased in both the saturated and unsaturated zones of other columns. No significant change in NO2 (-)-N concentration was observed in the experiment. These results suggest that water level changes must be considered in the remediation of groundwater nitrate pollution in the field.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Nitrates/analysis , Nitrites , Nitrogen Cycle , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL