Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 308: 122567, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603825

ABSTRACT

Frequent injections of anti-CD124 monoclonal antibody (αCD124) over long periods of time are used to treat chronic rhinosinusitis with nasal polyps (CRSwNP). Needle-free, intranasal administration (i.n.) of αCD124 is expected to provide advantages of localized delivery, improved efficacy, and enhanced medication adherence. However, delivery barriers such as the mucus and epithelium in the nasal tissue impede penetration of αCD124. Herein, two novel protamine nanoconstructs: allyl glycidyl ether conjugated protamine (Nano-P) and polyamidoamine-linked protamine (Dendri-P) were synthesized and showed enhanced αCD124 penetration through multiple epithelial layers compared to protamine in mice. αCD124 was mixed with Nano-P or Dendri-P and then intranasally delivered for the treatment of severe CRSwNP in mice. Micro-CT and pathological changes in nasal turbinates showed that these two nano-formulations achieved ∼50 % and ∼40 % reductions in nasal polypoid lesions and eosinophil count, respectively. Both nano-formulations provided enhanced efficacy in suppressing nasal and systemic Immunoglobulin E (IgE) and nasal type 2 inflammatory biomarkers, such as interleukin 13 (IL-13) and IL-25. These effects were superior to those in the protamine formulation group and subcutaneous (s.c.) αCD124 given at a 12.5-fold higher dose. Intranasal delivery of protamine, Nano-P, or Dendri-P did not induce any measurable toxicities in mice.


Subject(s)
Antibodies, Monoclonal , Nasal Polyps , Protamines , Rhinosinusitis , Animals , Female , Mice , Administration, Intranasal , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Chronic Disease , Mice, Inbred BALB C , Nasal Polyps/drug therapy , Nasal Polyps/pathology , Protamines/chemistry , Rhinosinusitis/drug therapy
4.
J Biol Chem ; 297(1): 100825, 2021 07.
Article in English | MEDLINE | ID: mdl-34029594

ABSTRACT

Normal contractile function of the heart depends on a constant and reliable production of ATP by cardiomyocytes. Dysregulation of cardiac energy metabolism can result in immature heart development and disrupt the ability of the adult myocardium to adapt to stress, potentially leading to heart failure. Further, restoration of abnormal mitochondrial function can have beneficial effects on cardiac dysfunction. Previously, we identified a novel protein termed Perm1 (PGC-1 and estrogen-related receptor (ERR)-induced regulator, muscle 1) that is enriched in skeletal and cardiac-muscle mitochondria and transcriptionally regulated by PGC-1 (peroxisome proliferator-activated receptor gamma coactivator 1) and ERR. The role of Perm1 in the heart is poorly understood and is studied here. We utilized cell culture, mouse models, and human tissue, to study its expression and transcriptional control, as well as its role in transcription of other factors. Critically, we tested Perm1's role in cardiomyocyte mitochondrial function and its ability to protect myocytes from stress-induced damage. Our studies show that Perm1 expression increases throughout mouse cardiogenesis, demonstrate that Perm1 interacts with PGC-1α and enhances activation of PGC-1 and ERR, increases mitochondrial DNA copy number, and augments oxidative capacity in cultured neonatal mouse cardiomyocytes. Moreover, we found that Perm1 reduced cellular damage produced as a result of hypoxia and reoxygenation-induced stress and mitigated cell death of cardiomyocytes. Taken together, our results show that Perm1 promotes mitochondrial biogenesis in mouse cardiomyocytes. Future studies can assess the potential of Perm1 to be used as a novel therapeutic to restore cardiac dysfunction induced by ischemic injury.


Subject(s)
Mitochondria, Heart/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Organelle Biogenesis , Oxygen/metabolism , Animals , Cell Hypoxia , DNA, Mitochondrial/genetics , Down-Regulation/genetics , Heart/embryology , Heart Failure/genetics , Heart Ventricles/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Muscle Proteins/genetics , Oxidation-Reduction , Oxidative Phosphorylation , Promoter Regions, Genetic/genetics , Protein Biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Estrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...