Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nanomicro Lett ; 11(1): 92, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-34138033

ABSTRACT

Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement, motion detection and voice recognition. In recent years, many significant improvements had been made to enhance the sensor's performance including sensitivity, flexibility and repeatability. However, it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate. Herein, inspired by typography, a low-cost, environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube (CNT) film is proposed. In this dry transfer strategy, a porous CNT block was used as both the seal and the ink; and Ecoflex film was served as an object substrate. Well-designed CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process. Moreover, the CNT film can be directly used to fabricate ultrathin (300 µm) strain sensor. This strain sensor possesses high sensitivity with a gauge factor (GF) up to 9960 at 85% strain, high stretchability (> 200%) and repeatability (> 5000 cycles). It has been used to measure pulse signals and detect joint motion, suggesting promising application prospects in flexible and wearable electronic devices.

2.
Nanoscale ; 10(28): 13599-13606, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29978867

ABSTRACT

High stretchability and sensitivity of strain sensors are two properties that are very difficult to combine together into one material, due to the intrinsic dilemma of the opposite requirements of robustness of the conductive network. Therefore, the improvement of one property is always achieved at the expense of decreasing the other property, and preventing its practical application. Inspired by the micro-structure of the copolymer, which consists of stretchable amorphous and strong crystal domains, we developed a highly stretchable and sensitive strain sensor, based on innovative gradient carbon nanotubes (CNTs). By integrating randomly oriented and well aligned CNTs, acting as sensitive and stretchable conductive elements, respectively, into a continuous changing structure, our strain sensors successfully combine both a high sensitivity (gauge factor (GF) = 13.5) and ultra-stretchability (>550%). With a fast response speed (<33 ms) and recovery speed (<60 ms), lossless detection of a 8 Hz mechanical signal has been easily realized. In addition, the gradient CNTs strain sensors also showed great durability in a dynamic test of 12 000 cycles, as well as extraordinary linearity and ultra-low working voltage (10 mV). These outstanding features mean our sensors have enormous potential for applications in health monitoring, sports performance monitoring and soft robotics.

3.
ACS Appl Mater Interfaces ; 10(15): 12816-12823, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29582991

ABSTRACT

Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa-1) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.


Subject(s)
Graphite/chemistry , Nylons , Porosity , Pressure , Touch
4.
Nanoscale ; 10(8): 3877-3883, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29417971

ABSTRACT

Carbon nanomaterials with 3D structures as sulfur hosts have been widely developed in lithium-sulfur batteries because of their high specific surface area, high conductivity and structural stability. However, sulfur, loaded by melting-diffusion method, is usually attached to the outside surface of carbon host, resulting in weak adsorption to expose polysulfide. Herein, we report a template-free method for synthesizing graphene-like nano-cell (GLC) with high in situ sulfur loading (S@GLC). The GLC is expected to provide physical adsorption by enclosed graphene cell architecture and chemical adsorption by pyridinic N-doping and oxygen functional group. With these merits, the S@GLC cathode owned high sulfur content (72%) and also, it exhibited a reversible specific capacity of 1253 mA h g-1 at 0.2C, excellent rate performance, and long cycling stability (502 mA h g-1 after 400 cycles at 1C).

5.
Small ; 13(44)2017 11.
Article in English | MEDLINE | ID: mdl-28961373

ABSTRACT

Pressure sensing is a crucial function for flexible and wearable electronics, such as artificial skin and health monitoring. Recent progress in material and device structure of pressure sensors has brought breakthroughs in flexibility, self-healing, and sensitivity. However, the fabrication process of many pressure sensors is too complicated and difficult to integrate with traditional silicon-based Micro-Electro-Mechanical System(MEMS). Here, this study demonstrates a scalable and integratable contact resistance-based pressure sensor based on a carbon nanotube conductive network and a photoresist insulation layer. The pressure sensors have high sensitivity (95.5 kPa-1 ), low sensing threshold (16 Pa), fast response speed (<16 ms), and zero power consumption when without loading pressure. The sensitivity, sensing threshold, and dynamic range are all tunable by conveniently modifying the hole diameter and thickness of insulation layer.

6.
ACS Appl Mater Interfaces ; 9(28): 24111-24117, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28657288

ABSTRACT

Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa-1), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.

7.
ACS Appl Mater Interfaces ; 8(17): 10977-84, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27111911

ABSTRACT

It is unavoidable to form wrinkles, which are folds or creases in a material, in graphene, whenever the graphene is prepared by micromechanical exfoliation from graphite or chemical vapor deposition (CVD). However, the controllable formation and structures of graphene with nanoscale wrinkles remains a big challenge. Here, we report a liquid-phase shrink method to controllably fabricate large-area wrinkled graphene (WG). The CVD-prepared graphene self-shrinks into a WG on an ethanol solution surface. By modifying the concentration of the ethanol solution, we can easily and efficiently obtain WG with a uniform distribution of wrinkles with different heights. The WG shows high stretchability and can withstand more than 100% tensile strain and up to 720° twist. Furthermore, electromechanical response sensors based on double-layer stacking of WG show ultrahigh sensitivity. This simple, effective, and environmentally friendly liquid-phase shrink method will pave a way for the controllable formation of WG, which is an ideal candidate for application in highly stretchable and highly sensitive electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...