Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 3(3): fcab205, 2021.
Article in English | MEDLINE | ID: mdl-34541532

ABSTRACT

Aquired apraxia of speech is a disorder that impairs speech production, despite intact peripheral neuromotor function. Its pathomechanism remains to be established. Neurodegenerative lesion models provide an unequalled opportunity to explore the neural correlates of apraxia of speech, which is present in a subset of patients diagnosed with non-semantic variants of primary progressive aphasia. The normalized pairwise variability index, an acoustic measure of speech motor programming, has shown high sensitivity and specificity for apraxia of speech in cross-sectional studies. Here, we aimed to examine the strength of the pairwise variability index and overall word duration (i.e. articulation rate) as markers of progressive motor programming deficits in primary progressive aphasia with apraxia of speech. Seventy-nine individuals diagnosed with primary progressive aphasia (39 with non-fluent variant and 40 with logopenic variant) and 40 matched healthy controls participated. Patients were followed-up annually (range 1-6 years, median number of visits = 2). All participants completed a speech assessment task and a high-resolution MRI. Our analyses investigated trajectories of speech production (e.g. pairwise variablity index and word duration) and associations with cortical atrophy in the patients. At first presentation, word duration differentiated the nonfluent and logopenic cases statistically, but the range of scores overlapped substantially across groups. Longitudinally, we observed progressive deterioration in pairwise variability index and word duration specific to the non-fluent group only. The pairwise variability index showed particularly strong associations with progressive atrophy in speech motor programming brain regions. Of novelty, our results uncovered a key role of the right frontal gyrus in underpinning speech motor programming changes in non-fluent cases, highlighting the importance of right-brain regions in responding to progressive neurological changes in the speech motor network. Taken together, our findings validate the use of a new metric, the pairwise variability index, as a robust marker of apraxia of speech in contrast to more generic measures of speaking rate. Sensitive/specific neuroimaging biomarkers of the emergence and progression of speech impairments will be useful to inform theories of the pathomechanisms underpinning impaired speech motor control. Our findings justify developing more sensitive measures of rhythmic temporal control of speech that may enable confident detection of emerging speech disturbances and more sensitive tracking of intervention-related changes for pharmacological, neuromodulatory and behavioural interventions. A more reliable detection of speech disturbances has relevance for patient care, with predominance of progressive apraxia of speech a high-risk factor for later diagnosis of progressive supranuclear palsy or corticobasal degeneration.

2.
Ann Clin Transl Neurol ; 6(9): 1707-1717, 2019 09.
Article in English | MEDLINE | ID: mdl-31461580

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) is associated with complex changes in eating behavior and metabolism, which potentially affect disease pathogenesis and survival. It is currently not known if body composition changes and changes in fat deposition also exist in FTD, the relationship of these changes in eating behavior and appetite, and whether these changes are centrally mediated. METHODS: Body composition was measured in 28 people with behavioral-variant frontotemporal dementia (bvFTD), 16 with Alzheimer's disease (AD), and 19 healthy controls, using dual energy x-ray absorptiometry. Changes in body composition were correlated to brain grey matter atrophy using voxel-based morphometry on high-resolution magnetic resonance imaging. RESULTS: Behavioral-variant FTD was characterized by changes in body composition, with increased total fat mass, visceral adipose tissue area (VAT area), and android: gynoid ratio compared to control and AD participants (all P values < 0.05). Changes in body composition correlated to abnormal eating behavior and behavioral change (P < 0.01) and functional decline (P < 0.01). Changes in body composition also correlated to grey matter atrophy involving a distributed neural network that included the hippocampus, amygdala, nucleus accumbens, insula, cingulate, and cerebellum - structures known to be central to autonomic control - as well as the thalamus, putamen, accumbens, and caudate, which are involved in reward processing. CONCLUSIONS: Changes in body composition and fat deposition extend the clinical phenomenology in bvFTD beyond cognition and behavior, with changes associated with changes in reward and autonomic processing suggesting that these deficits may be central in FTD.


Subject(s)
Body Composition/physiology , Brain/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Gray Matter/diagnostic imaging , Nerve Net/diagnostic imaging , Absorptiometry, Photon , Adipose Tissue/diagnostic imaging , Aged , Atrophy/diagnostic imaging , Feeding Behavior/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...