Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Parkinsonism Relat Disord ; 124: 107010, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38772265

ABSTRACT

PURPOSE: We investigated the contribution of genomic data reanalysis to the diagnostic yield of dystonia patients who remained undiagnosed after prior genome sequencing. METHODS: Probands with heterogeneous dystonia phenotypes who underwent initial genome sequencing (GS) analysis in 2019 were included in the reanalysis, which was performed through gene-specific discovery collaborations and systematic genomic data reanalysis. RESULTS: Initial GS analysis in 2019 (n = 111) identified a molecular diagnosis in 11.7 % (13/111) of cases. Reanalysis between 2020 and 2023 increased the diagnostic yield by 7.2 % (8/111); 3.6 % (4/111) through focused gene-specific clinical correlation collaborative efforts [VPS16 (two probands), AOPEP and POLG], and 3.6 % (4/111) by systematic reanalysis completed in 2023 [NUS1 (two probands) and DDX3X variants, and a microdeletion encompassing VPS16]. Seven of these patients had a high phenotype-based dystonia score ≥3. Notable unverified findings in four additional cases included suspicious variants of uncertain significance in FBXL4 and EIF2AK2, and potential phenotypic expansion associated with SLC2A1 and TREX1 variants. CONCLUSION: GS data reanalysis increased the diagnostic yield from 11.7 % to 18.9 %, with potential extension up to 22.5 %. While optimal timing for diagnostic reanalysis remains to be determined, this study demonstrates that periodic re-interrogation of dystonia GS datasets can provide additional genetic diagnoses, which may have significant implications for patients and their families.

2.
Ann Clin Transl Neurol ; 11(5): 1250-1266, 2024 May.
Article in English | MEDLINE | ID: mdl-38544359

ABSTRACT

OBJECTIVE: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS: Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION: Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.


Subject(s)
Exome Sequencing , Neuromuscular Diseases , Humans , Neuromuscular Diseases/genetics , Neuromuscular Diseases/diagnosis , Male , Female , Adult , Sequence Analysis, RNA/methods , Child , Adolescent , Exome/genetics , Middle Aged , Young Adult , Child, Preschool , High-Throughput Nucleotide Sequencing , Infant , Genetic Testing/methods
3.
Neuromuscul Disord ; 32(9): 707-717, 2022 09.
Article in English | MEDLINE | ID: mdl-35948506

ABSTRACT

Paediatric hyperCKaemia without weakness presents a clinical conundrum. Invasive investigations with low diagnostic yields, including muscle biopsy, may be considered unjustifiable. Improved access to genome-wide genetic testing has shifted first-line investigations towards genetic studies in neuromuscular disease. This research aims to provide an evidence-based diagnostic approach to paediatric hyperCKaemia without weakness, a current gap in the literature. We identified 47 individuals (10-months to 16-years-old; 34 males, 13 females) from 43 families presenting with hyperCKaemia on two or more occasions, without weakness, from The Children's Hospital at Westmead Neuromuscular Clinic Database. Clinical features, investigations and outcomes were analysed via retrospective chart review. Genetic testing has been performed in 34/43. Genetic variants explaining hyperCKaemia were identified in 25/34 (74%) using multiplex ligation-dependent probe amplification, massive parallel sequencing, single gene testing and exome sequencing. Pathogenic/likely pathogenic variants were identified in 19 neuromuscular disease genes and six metabolic myopathy genes. Individuals with metabolic diagnoses had higher peak creatine kinase levels that sometimes normalized. Conversely, creatine kinase levels remained persistently elevated those with neuromuscular diagnoses. In summary, a genetic cause is found in most paediatric patients with hyperCKaemia without weakness informing clinical management and counselling. Thus, we propose a diagnostic algorithm for this cohort.


Subject(s)
Muscular Diseases , Neuromuscular Diseases , Child , Creatine Kinase , Female , Genetic Testing , Humans , Male , Muscle Weakness/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Retrospective Studies
4.
HGG Adv ; 3(4): 100125, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-35847480

ABSTRACT

Predicting the pathogenicity of acceptor splice-site variants outside the essential AG is challenging, due to high sequence diversity of the extended splice-site region. Critical analysis of 24,445 intronic extended acceptor splice-site variants reported in ClinVar and the Leiden Open Variation Database (LOVD) demonstrates 41.9% of pathogenic variants create an AG dinucleotide between the predicted branchpoint and acceptor (AG-creating variants in the AG exclusion zone), 28.4% result in loss of a pyrimidine at the -3 position, and 15.1% result in loss of one or more pyrimidines in the polypyrimidine tract. Pathogenicity of AG-creating variants was highly influenced by their position. We define a high-risk zone for pathogenicity: > 6 nucleotides downstream of the predicted branchpoint and >5 nucleotides upstream from the acceptor, where 93.1% of pathogenic AG-creating variants arise and where naturally occurring AG dinucleotides are concordantly depleted (5.8% of natural AGs). SpliceAI effectively predicts pathogenicity of AG-creating variants, achieving 95% sensitivity and 69% specificity. We highlight clinical examples showing contrasting mechanisms for mis-splicing arising from AG variants: (1) cryptic acceptor created; (2) splicing silencer created: an introduced AG silences the acceptor, resulting in exon skipping, intron retention, and/or use of an alternative existing cryptic acceptor; and (3) splicing silencer disrupted: loss of a deep intronic AG activates inclusion of a pseudo-exon. In conclusion, we establish AG-creating variants as a common class of pathogenic extended acceptor variant and outline factors conferring critical risk for mis-splicing for AG-creating variants in the AG exclusion zone, between the branchpoint and acceptor.

5.
Neurology ; 99(7): e730-e742, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35641312

ABSTRACT

BACKGROUND AND OBJECTIVES: Mitochondrial diseases (MDs) are the commonest group of heritable metabolic disorders. Phenotypic diversity can make molecular diagnosis challenging, and causative genetic variants may reside in either mitochondrial or nuclear DNA. A single comprehensive genetic diagnostic test would be highly useful and transform the field. We applied whole-genome sequencing (WGS) to evaluate the variant detection rate and diagnostic capacity of this technology with a view to simplifying and improving the MD diagnostic pathway. METHODS: Adult patients presenting to a specialist MD clinic in Sydney, Australia, were recruited to the study if they satisfied clinical MD (Nijmegen) criteria. WGS was performed on blood DNA, followed by clinical genetic analysis for known pathogenic MD-associated variants and MD mimics. RESULTS: Of the 242 consecutive patients recruited, 62 participants had "definite," 108 had "probable," and 72 had "possible" MD classification by the Nijmegen criteria. Disease-causing variants were identified for 130 participants, regardless of the location of the causative genetic variants, giving an overall diagnostic rate of 53.7% (130 of 242). Identification of causative genetic variants informed precise treatment, restored reproductive confidence, and optimized clinical management of MD. DISCUSSION: Comprehensive bigenomic sequencing accurately detects causative genetic variants in affected MD patients, simplifying diagnosis, enabling early treatment, and informing the risk of genetic transmission.


Subject(s)
Mitochondrial Diseases , Adult , Australia , Genetic Testing , Humans , Mitochondria , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Whole Genome Sequencing
6.
BMJ Case Rep ; 15(3)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35354563

ABSTRACT

An elderly man in his early 80s presented with a 6-month history of worsening lower limb weakness on a background of a longer-standing waddling gait. Examination revealed bilateral scapular winging, and weakness in his proximal and distal lower limbs. Electromyography showed widespread chronic partial denervation changes, while sensory and motor nerve conduction parameters were preserved. After little progression over the course of 18 months, motor neuron disease was deemed less likely. Genetic testing revealed BICD2-related spinal muscular atrophy with lower extremity dominance (SMALED2), a disease that is usually of earlier onset. He is the oldest patient in the literature to be diagnosed with SMALED2 while maintaining ambulation, suggesting the milder spectrum of BICD2-related disease.


Subject(s)
Motor Neuron Disease , Muscular Atrophy, Spinal , Adult , Aged , Humans , Lower Extremity , Male , Muscle Weakness , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Walking
7.
Oxf Med Case Reports ; 2022(2): omac012, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198232

ABSTRACT

We report on a 79-year-old man diagnosed with localized Merkel cell carcinoma (MCC) who also had acetylcholine receptor antibody (Ach-R-Ab)-positive myasthenia gravis (MG) controlled on prednisolone, mycophenolate and intravenous immunoglobulin (IVIG). His MCC was initially treated with radiation, followed by chemotherapy on metastatic recurrence. Chemotherapy initially stabilized the disease, but he experienced significant fatigue and his disease progressed within 3 months. After careful consideration of the risk of a myasthenic crisis, he was commenced on avelumab. He had initial partial response, though he ultimately developed progressive disease which led to a decision for best supportive care at 10 months post starting immunotherapy. Importantly, as per spirometry, his MG remained stable throughout immunotherapy. We present the current case to demonstrate that MG should not be viewed as an absolute contraindication to immunotherapy in scenarios where there are limited alternate therapeutic options.

8.
Intern Med J ; 52(1): 110-120, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34505344

ABSTRACT

This document provides consensus-based recommendations for general physicians and primary care physicians who diagnose and manage patients with mitochondrial diseases (MD). It builds on previous international guidelines, with particular emphasis on clinical management in the Australian setting. This statement was prepared by a working group of medical practitioners, nurses and allied health professionals with clinical expertise and experience in managing Australian patients with MD. As new treatments and management plans emerge, these consensus-based recommendations will continue to evolve, but current standards of care are summarised in this document.


Subject(s)
Mitochondrial Diseases , Standard of Care , Australia/epidemiology , Consensus , Guidelines as Topic , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Societies, Medical
9.
Ecol Appl ; 32(2): e2522, 2022 03.
Article in English | MEDLINE | ID: mdl-34918411

ABSTRACT

Disruption of plant-pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai'i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator-pollinator-plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations.


Subject(s)
Ecosystem , Introduced Species , Pollination , Animals , Ants , Bees , Flowers , Mice , Rats , Wasps
10.
Neurology ; 96(12): e1595-e1607, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33597289

ABSTRACT

OBJECTIVE: To assess long-term (2 years) effects of bimagrumab in participants with sporadic inclusion body myositis (sIBM). METHODS: Participants (aged 36-85 years) who completed the core study (RESILIENT [Efficacy and Safety of Bimagrumab/BYM338 at 52 Weeks on Physical Function, Muscle Strength, Mobility in sIBM Patients]) were invited to join an extension study. Individuals continued on the same treatment as in the core study (10 mg/kg, 3 mg/kg, 1 mg/kg bimagrumab or matching placebo administered as IV infusions every 4 weeks). The co-primary outcome measures were 6-minute walk distance (6MWD) and safety. RESULTS: Between November 2015 and February 2017, 211 participants entered double-blind placebo-controlled period of the extension study. Mean change in 6MWD from baseline was highly variable across treatment groups, but indicated progressive deterioration from weeks 24-104 in all treatment groups. Overall, 91.0% (n = 142) of participants in the pooled bimagrumab group and 89.1% (n = 49) in the placebo group had ≥1 treatment-emergent adverse event (AE). Falls were slightly higher in the bimagrumab 3 mg/kg group vs 10 mg/kg, 1 mg/kg, and placebo groups (69.2% [n = 36 of 52] vs 56.6% [n = 30 of 53], 58.8% [n = 30 of 51], and 61.8% [n = 34 of 55], respectively). The most frequently reported AEs in the pooled bimagrumab group were diarrhea 14.7% (n = 23), involuntary muscle contractions 9.6% (n = 15), and rash 5.1% (n = 8). Incidence of serious AEs was comparable between the pooled bimagrumab and the placebo group (18.6% [n = 29] vs 14.5% [n = 8], respectively). CONCLUSION: Extended treatment with bimagrumab up to 2 years produced a good safety profile and was well-tolerated, but did not provide clinical benefits in terms of improvement in mobility. The extension study was terminated early due to core study not meeting its primary endpoint. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02573467. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with sIBM, long-term treatment with bimagrumab was safe, well-tolerated, and did not provide meaningful functional benefit. The study is rated Class IV because of the open-label design of extension treatment period 2.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Myositis, Inclusion Body/drug therapy , Accidental Falls , Adult , Aged , Aged, 80 and over , Double-Blind Method , Female , Humans , Male , Middle Aged , Muscle Strength/drug effects , Myositis, Inclusion Body/complications , Time , Treatment Outcome , Walk Test
11.
BMJ Open ; 10(12): e040230, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33334834

ABSTRACT

INTRODUCTION: Emerging evidence indicates that rehabilitation can improve ataxia, mobility and independence in everyday activities in individuals with hereditary cerebellar ataxia. However, with the rarity of the genetic ataxias and known recruitment challenges in rehabilitation trials, most studies have been underpowered, non-randomised or non-controlled. This study will be the first, appropriately powered randomised controlled trial to examine the efficacy of an outpatient and home-based rehabilitation programme on improving motor function for individuals with hereditary cerebellar ataxia. METHODS AND ANALYSIS: This randomised, single-blind, parallel group trial will compare a 30-week rehabilitation programme to standard care in individuals with hereditary cerebellar ataxia. Eighty individuals with a hereditary cerebellar ataxia, aged 15 years and above, will be recruited. The rehabilitation programme will include 6 weeks of outpatient land and aquatic physiotherapy followed immediately by a 24- week home exercise programme supported with fortnightly physiotherapy sessions. Participants in the standard care group will be asked to continue their usual physical activity. The primary outcome will be the motor domain of the Functional Independence Measure. Secondary outcomes will measure the motor impairment related to ataxia, balance, quality of life and cost-effectiveness. Outcomes will be administered at baseline, 7 weeks, 18 weeks and 30 weeks by a physiotherapist blinded to group allocation. A repeated measures mixed-effects linear regression model will be used to analyse the effect of the treatment group for each of the dependent continuous variables. The primary efficacy analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION: The study has been approved by the Monash Health Human Research Ethics Committee (HREC/18/MonH/418) and the Human Research Ethics Committee of the Northern Territory Department of Health and Menzies School of Health Research (2019/3503). Results will be published in peer-reviewed journals, presented at national and/or international conferences and disseminated to Australian ataxia support groups. TRIAL REGISTRATION NUMBER: ACTRN12618000908235.


Subject(s)
Cerebellar Ataxia , Outpatients , Physical Therapy Modalities , Quality of Life , Adolescent , Ataxia , Australia , Cerebellar Ataxia/rehabilitation , Exercise Therapy , Humans , Randomized Controlled Trials as Topic , Single-Blind Method
12.
Clin Neurophysiol ; 131(11): 2766-2776, 2020 11.
Article in English | MEDLINE | ID: mdl-32928695

ABSTRACT

OBJECTIVE: Sporadic inclusion body myositis (sIBM) has been associated with neuropathy. This study employs nerve excitability studies to re-examine this association and attempt to understand underlying pathophysiological mechanisms. METHODS: Twenty patients with sIBM underwent median nerve motor and sensory excitability studies, clinical assessments, conventional nerve conduction testing (NCS) and quantitative thermal threshold studies. These results were compared to established normal controls, or results from a normal cohort of older control individuals. RESULTS: Seven sIBM patients (35%) demonstrated abnormalities in conventional NCS, with ten patients (50%) demonstrating abnormalities in thermal thresholds. Median nerve motor and sensory excitability differed significantly in sIBM patients when compared to normal controls. None of these neurophysiological markers correlated significantly with clinical markers of sIBM severity. CONCLUSION: A concurrent neuropathy exists in a significant proportion of sIBM patients, with nerve excitability studies revealing changes possibly consistent with axolemmal depolarization or concurrent neuronal adaptation to myopathy. Neuropathy in sIBM does not correlate with muscle disease severity and may reflect a differing tissue response to a common pathogenic factor. SIGNIFICANCE: This study affirms the presence of a concurrent neuropathy in a large proportion of sIBM patients that appears independent of the severity of myopathy.


Subject(s)
Median Nerve/physiopathology , Myositis, Inclusion Body/physiopathology , Neural Conduction/physiology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology
13.
Clin Neurophysiol ; 130(12): 2272-2281, 2019 12.
Article in English | MEDLINE | ID: mdl-31542255

ABSTRACT

OBJECTIVE: To study patients with sporadic inclusion body myositis (sIBM) with muscle velocity recovery cycles (MVRC) to assess muscle membrane excitability, pathophysiological mechanisms and potential biomarkers of this disorder. METHODS: MVRC were recorded from 20 individuals with sIBM from tibialis anterior (TA) and rectus femoris (RF) muscles. Excitability parameters were compared with MVRC data obtained from 22 normal controls >50 years. RESULTS: Muscle relative refractory period was prolonged in both TA (6.4 ms vs 4.4 ms, P < 0.001) and RF (7.1 ms vs 3.9 ms, P < 0.001) of sIBM affected muscle when compared to controls. Early supernormality was reduced in both TA (3.6% vs 8.8% P = 0.001) and in RF (mean 5.4% vs 13% P < 0.001). Late supernormality was only decreased significantly in sIBM affected TA (1.8% vs 3.6% P = 0.001) but not in RF. No consistent correlations between MVRC parameters and clinical markers of sIBM disease severity were found. CONCLUSION: The resting sarcolemmal muscle membrane potential of sIBM muscle is depolarized relative to that of normal controls, which may be related to intramuscular amyloid deposition in sIBM. SIGNIFICANCE: Sarcolemmal depolarization may play a role in muscle dysfunction and weakness observed in sIBM patients.


Subject(s)
Membrane Potentials , Muscle, Skeletal/physiopathology , Myositis, Inclusion Body/physiopathology , Sarcolemma/physiology , Aged , Female , Humans , Male , Middle Aged , Muscle Contraction , Refractory Period, Electrophysiological
14.
Lancet Neurol ; 18(9): 834-844, 2019 09.
Article in English | MEDLINE | ID: mdl-31397289

ABSTRACT

BACKGROUND: Inclusion body myositis is an idiopathic inflammatory myopathy and the most common myopathy affecting people older than 50 years. To date, there are no effective drug treatments. We aimed to assess the safety, efficacy, and tolerability of bimagrumab-a fully human monoclonal antibody-in individuals with inclusion body myositis. METHODS: We did a multicentre, double-blind, placebo-controlled study (RESILIENT) at 38 academic clinical sites in Australia, Europe, Japan, and the USA. Individuals (aged 36-85 years) were eligible for the study if they met modified 2010 Medical Research Council criteria for inclusion body myositis. We randomly assigned participants (1:1:1:1) using a blocked randomisation schedule (block size of four) to either bimagrumab (10 mg/kg, 3 mg/kg, or 1 mg/kg) or placebo matched in appearance to bimagrumab, administered as intravenous infusions every 4 weeks for at least 48 weeks. All study participants, the funder, investigators, site personnel, and people doing assessments were masked to treatment assignment. The primary outcome measure was 6-min walking distance (6MWD), which was assessed at week 52 in the primary analysis population and analysed by intention-to-treat principles. We used a multivariate normal repeated measures model to analyse data for 6MWD. Safety was assessed by recording adverse events and by electrocardiography, echocardiography, haematological testing, urinalysis, and blood chemistry. This trial is registered with ClinicalTrials.gov, number NCT01925209; this report represents the final analysis. FINDINGS: Between Sept 26, 2013, and Jan 6, 2016, 251 participants were enrolled to the study, of whom 63 were assigned to each bimagrumab group and 62 were allocated to the placebo group. At week 52, 6MWD change from baseline did not differ between any bimagrumab dose and placebo (least squares mean treatment difference for bimagrumab 10 mg/kg group, 17·6 m, SE 14·3, 99% CI -19·6 to 54·8; p=0·22; for 3 mg/kg group, 18·6 m, 14·2, -18·2 to 55·4; p=0·19; and for 1 mg/kg group, -1·3 m, 14·1, -38·0 to 35·4; p=0·93). 63 (100%) participants in each bimagrumab group and 61 (98%) of 62 in the placebo group had at least one adverse event. Falls were the most frequent adverse event (48 [76%] in the bimagrumab 10 mg/kg group, 55 [87%] in the 3 mg/kg group, 54 [86%] in the 1 mg/kg group, and 52 [84%] in the placebo group). The most frequently reported adverse events with bimagrumab were muscle spasms (32 [51%] in the bimagrumab 10 mg/kg group, 43 [68%] in the 3 mg/kg group, 25 [40%] in the 1 mg/kg group, and 13 [21%] in the placebo group) and diarrhoea (33 [52%], 28 [44%], 20 [32%], and 11 [18%], respectively). Adverse events leading to discontinuation were reported in four (6%) participants in each bimagrumab group compared with one (2%) participant in the placebo group. At least one serious adverse event was reported by 21 (33%) participants in the 10 mg/kg group, 11 (17%) in the 3 mg/kg group, 20 (32%) in the 1 mg/kg group, and 20 (32%) in the placebo group. No significant adverse cardiac effects were recorded on electrocardiography or echocardiography. Two deaths were reported during the study, one attributable to subendocardial myocardial infarction (secondary to gastrointestinal bleeding after an intentional overdose of concomitant sedatives and antidepressants) and one attributable to lung adenocarcinoma. Neither death was considered by the investigator to be related to bimagrumab. INTERPRETATION: Bimagrumab showed a good safety profile, relative to placebo, in individuals with inclusion body myositis but did not improve 6MWD. The strengths of our study are that, to the best of our knowledge, it is the largest randomised controlled trial done in people with inclusion body myositis, and it provides important natural history data over 12 months. FUNDING: Novartis Pharma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Myositis, Inclusion Body/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome
15.
Am J Bot ; 106(2): 313-324, 2019 02.
Article in English | MEDLINE | ID: mdl-30768870

ABSTRACT

PREMISE OF THE STUDY: Over one-third of the native flowering plant species in the Hawaiian Islands are listed as federally threatened or endangered. Lack of sufficient pollination could contribute to reductions in populations, reproduction, and genetic diversity among these species but has been little studied. METHODS: We used systematic observations and manual flower treatments to quantify flower visitation and outcrossing dependency of eight native (including four endangered) plant species in a dryland ecosystem in Hawaii: Argemone glauca, Bidens menziesii, Dubautia linearis, Haplostachys haplostachya, Sida fallax, Silene lanceolata, Stenogyne angustifolia, and Tetramolopium arenarium. KEY RESULTS: During 576.36 h of flower observations, only insects visited the flowers. Out of all recorded flower visits, 85% were performed by non-native species, particularly the honeybee (Apis mellifera) and flies in the family Syrphidae. Some plant species received little visitation (e.g., S. angustifolia received one visit in 120 h of observation), whereas others were visited by a wide diversity of insects. The endangered plant species were visited by fewer visitor taxa than were the common native plant species. For six of the focal plant species, bagging of flowers to exclude pollinators resulted in significant reductions in seed set. CONCLUSIONS: The flower visitor community in this system, although heavily dominated by non-native insects, appears to be facilitating pollination for multiple plant species. Non-native insects may thus be sustaining biotic interactions otherwise threatened with disruption in this island ecosystem. This may be particularly important for the studied endangered plant species, which exhibit fewer partners than the more common plant species.


Subject(s)
Insecta , Introduced Species , Magnoliopsida , Pollination , Animals , Hawaii
16.
Cerebellum ; 18(1): 137-146, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30078120

ABSTRACT

Genetic testing strategies such as next-generation sequencing (NGS) panels and whole genome sequencing (WGS) can be applied to the hereditary cerebellar ataxias (HCAs), but their exact role in the diagnostic pathway is unclear. We aim to determine the yield from genetic testing strategies and the genetic and phenotypic spectrum of HCA in Australia by analysing real-world data. We performed a retrospective review on 87 HCA cases referred to the Neurogenetics Clinic at the Royal North Shore Hospital, Sydney, Australia. Probands underwent triplet repeat expansion testing; those that tested negative had NGS-targeted panels and WGS testing when available. In our sample, 58.6% were male (51/87), with an average age at onset of 37.1 years. Individuals with sequencing variants had a prolonged duration of illness compared to those with a triplet repeat expansion. The detection rate in probands for routine repeat expansion panels was 13.8% (11/80). NGS-targeted panels yielded a further 11 individuals (11/32, 34.4%), with WGS yielding 1 more diagnosis (1/3, 33.3%). NGS panels and WGS improved the overall diagnostic rate to 28.8% (23/80) in 14 known HCA loci. The genetic findings included novel variants in ANO10, CACNA1A, PRKCG and SPG7. Our findings highlight the genetic heterogeneity of HCAs and support the use of NGS approaches for individuals who were negative on repeat expansion testing. In comparison to repeat disorders, individuals with sequencing variants may have a prolonged duration of illness, consistent with slower progression of disease.


Subject(s)
Cerebellar Ataxia/genetics , Genetic Heterogeneity , Adolescent , Adult , Aged , Australia , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/epidemiology , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Retrospective Studies , Sequence Analysis, DNA , Trinucleotide Repeat Expansion , Young Adult
17.
Evol Appl ; 11(2): 231-242, 2018 02.
Article in English | MEDLINE | ID: mdl-29387158

ABSTRACT

Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa. Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

18.
Handb Clin Neurol ; 147: 125-141, 2018.
Article in English | MEDLINE | ID: mdl-29325608

ABSTRACT

Mitochondrial diseases collectively describe a diverse group of heritable disorders that invariably affect mitochondrial respiratory chain function and cellular energy production. Together they represent the most common cause of inherited metabolic disease, may present at any age, have a wide spectrum of clinical manifestations, may be insidious in onset, and potentially have high morbidity and mortality. Due to the presence of mitochondria in all nucleated cells, mitochondrial disease can affect many different tissues, with single or multiple systems being involved. This leads to highly variable presentations, making the diagnosis of mitochondrial diseases challenging. Recent advances in biomarker and genetic testing, coupled with emerging treatments and reproductive options, hold great promise for improving the clinical identification and management of this highly mutable disease group.


Subject(s)
DNA, Mitochondrial/genetics , Disease Management , Mitochondrial Diseases , Humans , Metabolic Diseases/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy
19.
Muscle Nerve ; 57(4): 595-602, 2018 04.
Article in English | MEDLINE | ID: mdl-28881011

ABSTRACT

INTRODUCTION: Chloride conductance disturbances contribute to sarcolemmal dysfunction in myotonic dystrophy type 1 (DM1) and type 2 (DM2). Studies using muscle velocity recovery cycles (MVRCs) suggest Na+ /K+ -adenosine triphosphatase activation becomes defective in advanced DM1. We used MVRCs to investigate muscle excitability in DM1 and DM2. METHODS: MVRCs were measured for patients with mild (n = 8) and advanced (n = 11) DM1, DM2 (n = 4), and normal controls (n = 30). RESULTS: Residual supernormality after multiple conditioning stimuli was increased in DM2 and advanced DM1. Advanced DM1 was distinguished by increases in muscle relative refractory period (MRRP) and reduced early supernormality as well as peak amplitude decrements for the first and last responses in train during repetitive stimulation. DISCUSSION: Prolongation of the MRRP indicates that depolarization of the resting muscle membrane potential occurs in advanced DM1, with possible implications for future therapeutic approaches. Muscle Nerve 57: 595-602, 2018.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myotonic Dystrophy/metabolism , Refractory Period, Electrophysiological , Sarcolemma/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged , Myotonic Dystrophy/physiopathology , Young Adult
20.
Neurobiol Aging ; 47: 218.e1-218.e9, 2016 11.
Article in English | MEDLINE | ID: mdl-27594680

ABSTRACT

Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders.


Subject(s)
Adenosine Triphosphatases/genetics , Cell Cycle Proteins/genetics , Genetic Association Studies , Genetic Variation/genetics , Myositis, Inclusion Body/genetics , Sequestosome-1 Protein/genetics , Aged , Aged, 80 and over , Genetic Predisposition to Disease , Humans , Middle Aged , Risk , Valosin Containing Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...