Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38136698

ABSTRACT

The crucial reservoir of antibiotic resistance genes (ARGs) within the chicken intestinal microbiome poses a serious threat to both animal and human health. In China, the overuse of antibiotics has significantly contributed to the proliferation of ARGs in the chicken intestinal microbiome, which is a serious concern. However, there has been relatively little research on the diversity of resistance genes in the chicken intestinal microbiome since the implementation of the National Pilot Work Program for Action to Reduce the Use of Veterinary Antimicrobial Drugs in China. The objective of this study was to analyze the diversity of antibiotic resistance genes carried by the chicken intestinal microbiome in both standard farms (SFs), which implement antibiotic reduction and passed national acceptance, and nonstandard farms (NSFs), which do not implement antibiotic reductions, in Hebei Province. Fresh fecal samples of broiler chickens were collected from SFs (n = 4) and NSF (n = 1) and analyzed using high-throughput qPCR technology. Our findings revealed that all five farms exhibited a wide range of highly abundant ARGs, with a total of 201 ARGs and 7 MGEs detected in all fecal samples. The dominant ARGs identified conferred resistance to aminoglycosides, macrolide-lincosamide-streptomycin B (MLSB), and tetracycline antibiotics. Cellular protection mechanisms were found to be the primary resistance mechanism for these ARGs. The analysis of the co-occurrence network demonstrated a significant positive correlation between the abundance of MGEs and ARGs. The SF samples showed a significantly lower relative abundance of certain ARGs than the NSF samples (p < 0.05). The results of this study show that the abundance of ARGs demonstrated a downward trend after the implementation of the National Pilot Work Program for Action to Reduce the Usage of Veterinary Antimicrobial Drugs in Hebei Province, China.

2.
Animals (Basel) ; 13(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37893917

ABSTRACT

Hebei Province is an important area for breeding broiler chickens in China, but the antimicrobial resistance and prevalence of Escherichia coli (E. coli) are still unclear. A total of 180 cloacal samples from broiler farms in Hebei Province were collected and used for the isolation and identification of E. coli. The isolates were subjected to resistance phenotyping, resistance profiling, and genotyping, and some multiresistant strains were subjected to multilocus sequence typing (MLST). The results showed that 175 strains were isolated. Among both types of broiler farms, the ampicillin resistance rate was the highest, and the meropenem resistance rate was the lowest. Serious multiresistance was present in both types of broiler farms. Thirty strains of multidrug-resistant E. coli were typed by MLST to obtain a total of 18 ST types, with ST10 being the most prevalent. This study was to simply analyze the antimicrobial resistance and prevalence of E. coli in broiler chickens in Hebei Province after the implementation of the pilot work program of action to reduce the use of veterinary antimicrobials in standard farms (SFs) and nonstandard farms (NSFs). This study will provide a research basis and data support for the prevention and control of E. coli in Hebei.

3.
Front Cell Infect Microbiol ; 12: 1071288, 2022.
Article in English | MEDLINE | ID: mdl-36683681

ABSTRACT

Introduction: Influenza A viruses (IAVs) are important pathogens of respiratory infections, causing not only seasonal influenza but also influenza pandemics and posing a global threat to public health. IAVs infection spreads rapidly, widely, and across species, causing huge losses, especially zoonotic IAVs infections that are more harmful. Fast and sensitive detection of IAVs is critical for controlling the spread of this disease. Methods: Here, a real-time reverse transcription recombinase-aided amplification (real-time RT-RAA) assay targeting conserved positions in the matrix protein gene (M gene) of IAVs, is successfully established to detect IAVs. The assay can be completed within 20 min at 42°C. Results: The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability, which was comparable to the sensitivity of the RT-qPCR assay. The specificity assay showed that the real-time RT-RAA assay was specific to IAVs, and there was no cross-reactivity with other important viruses. In addition, 100%concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 120 clinical specimens. Discussion: The results suggested that the real-time RT-RAA assay we developed was a specific, sensitive and reliable diagnostic tool for the rapid detection of IAVs.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Reverse Transcription , Influenza, Human/diagnosis , Influenza A virus/genetics , Recombinases/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...