Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691629

ABSTRACT

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Subject(s)
Glycine max , Phytic Acid , Glycine max/metabolism , Glycosylation , Phytic Acid/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Phosphorus/metabolism , Soil
2.
J Hazard Mater ; 460: 132496, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37703737

ABSTRACT

Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.


Subject(s)
Arabidopsis , Cadmium , Transcription Factors , Arabidopsis/drug effects , Arabidopsis/metabolism , Cadmium/toxicity , Crops, Agricultural , Gene Expression Regulation , Transcription Factors/metabolism , Tungsten
4.
J Exp Bot ; 74(3): 1140-1156, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36455868

ABSTRACT

Increased root secretion of H+ is a known strategy in plant adaption to low phosphorus (P) stress as it enhances mobilization of sparingly soluble P sources in the soil. However, our knowledge of the full effects induced by this enhanced acidification of the rhizosphere remains incomplete. In this study we found that P deficiency increased the net H+ flux rate from soybean (Glycine max) roots. Among the eight H+-pyrophosphatase (GmVP) genes in the soybean genome, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-GFP construct in tobacco (Nicotiana tabacum) leaves, together with functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that it encodes a plasma-membrane transporter that mediates H+ exudation. Overexpression of GmVP2 in Arabidopsis resulted in enhanced root H+ exudation, promoted root growth, and improved the utilization of sparingly soluble Ca-P. The improved root growth caused by GmVP2-overexpression might be due to the differential expression of genes related to hormone and flavonoid metabolism, and to root development. Overexpression of GmVP2 also changed the structure of the rhizospheric microbial community, as reflected by a preferential accumulation of Acidobacteria. Overall, our results suggest that GmVP2 mediates H+ exudation in the root response to Pi starvation, and that this influences plant growth, the mobilization sparingly soluble P-sources, and the structure of the microbial community in a coordinated manner.


Subject(s)
Arabidopsis , Phosphorus , Phosphorus/metabolism , Soil/chemistry , Protons , Rhizosphere , Plant Roots/metabolism , Arabidopsis/physiology
5.
Plants (Basel) ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079619

ABSTRACT

Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.

6.
Front Plant Sci ; 13: 947986, 2022.
Article in English | MEDLINE | ID: mdl-36003807

ABSTRACT

Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and are two major limiting factors for crop production in acid soils. The purpose of this study was to characterize the function of GmBBE-like43, a berberine bridge enzyme-like protein-encoding gene, in soybean (Glycine max) adaptation to Al and low P stresses. Present quantitative real-time PCR (qRT-PCR) assays confirmed the phosphate (Pi)-starvation enhanced and Al-stress up-regulated expression pattern of GmBBE-like43 in soybean roots. Meanwhile, the expression of a GmBBE-like43-GFP chimera in both common bean hairy roots and tobacco leaves demonstrated its cell wall localization. Moreover, both transgenic Arabidopsis and soybean hairy roots revealed the function of GmBBE-like43 in promoting root growth under both Al and low P stresses. GmBBE-like43-overexpression also resulted in more H2O2 production on transgenic soybean hairy root surface with oligogalacturonides (OGs) application and antagonized the effects of Al on the expression of two SAUR-like genes. Taken together, our results suggest that GmBBE-like43 might be involved in the soybean's coordinated adaptation to Al toxicity and Pi starvation through modulation of OGs-oxidation in the cell wall.

7.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35562981

ABSTRACT

Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.


Subject(s)
Arabidopsis , Fabaceae , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Crops, Agricultural/metabolism , Fabaceae/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Glycine max/metabolism
8.
Cells ; 11(4)2022 02 14.
Article in English | MEDLINE | ID: mdl-35203302

ABSTRACT

Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.


Subject(s)
Fertilizers , Phosphorus , Agriculture , Crops, Agricultural/metabolism , Phosphorus/metabolism , Proteomics
9.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884659

ABSTRACT

The membrane-bound NAC transcription (NTL) factors have been demonstrated to participate in the regulation of plant development and the responses to multiple environmental stresses. This study is aimed to functionally characterize soybean NTL transcription factors in response to Al-toxicity, which is largely uncharacterized. The qRT-PCR assays in the present study found that thirteen out of fifteen GmNTL genes in the soybean genome were up-regulated by Al toxicity. However, among the Al-up-regulated GmNTLs selected from six duplicate gene pairs, only overexpressing GmNTL1, GmNTL4, and GmNTL10 could confer Arabidopsis Al resistance. Further comprehensive functional characterization of GmNTL4 showed that the expression of this gene in response to Al stress depended on root tissues, as well as the Al concentration and period of Al treatment. Overexpression of GmNTL4 conferred Al tolerance of transgenic Arabidopsis in long-term (48 and 72 h) Al treatments. Moreover, RNA-seq assay identified 517 DEGs regulated by GmNTL4 in Arabidopsis responsive to Al stress, which included MATEs, ALMTs, PMEs, and XTHs. These results suggest that the function of GmNTLs in Al responses is divergent, and GmNTL4 might confer Al resistance partially by regulating the expression of genes involved in organic acid efflux and cell wall modification.


Subject(s)
Aluminum/pharmacology , Glycine max/metabolism , Plant Proteins/metabolism , Stress, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Glycine max/drug effects , Glycine max/genetics , Glycine max/growth & development , Trans-Activators/genetics , Trans-Activators/metabolism
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830230

ABSTRACT

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3'H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


Subject(s)
Anthocyanins/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis/drug effects , COP9 Signalosome Complex/genetics , Gene Expression Regulation, Plant , Glycine max/drug effects , Phosphorus/pharmacology , Plant Leaves/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , COP9 Signalosome Complex/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Genetic Complementation Test , Membrane Proteins/genetics , Membrane Proteins/metabolism , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Phosphorus/deficiency , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Glycine max/genetics , Glycine max/metabolism , Transgenes
11.
Plant J ; 108(5): 1422-1438, 2021 12.
Article in English | MEDLINE | ID: mdl-34587329

ABSTRACT

Phosphorus (P) deficiency adversely affects nodule development as reflected by reduced nodule fresh weight in legume plants. Though mechanisms underlying nodule adaptation to P deficiency have been studied extensively, it remains largely unknown which regulator mediates nodule adaptation to P deficiency. In this study, GUS staining and quantitative reverse transcription-PCR analysis reveal that the SPX member GmSPX5 is preferentially expressed in soybean (Glycine max) nodules. Overexpression of GmSPX5 enhanced soybean nodule development particularly under phosphate (Pi) sufficient conditions. However, the Pi concentration was not affected in soybean tissues (i.e., leaves, roots, and nodules) of GmSPX5 overexpression or suppression lines, which distinguished it from other well-known SPX members functioning in control of Pi homeostasis in plants. Furthermore, GmSPX5 was observed to interact with the transcription factor GmNF-YC4 in vivo and in vitro. Overexpression of either GmSPX5 or GmNF-YC4 significantly upregulated the expression levels of five asparagine synthetase-related genes (i.e., GmASL2-6) in soybean nodules. Meanwhile, yeast one-hybrid and luciferase activity assays strongly suggested that interactions of GmSPX5 and GmNF-YC4 activate GmASL6 expression through enhancing GmNF-YC4 binding of the GmASL6 promoter. These results not only demonstrate the GmSPX5-GmNF-YC4-GmASL6 regulatory pathway mediating soybean nodule development, but also considerably improve our understanding of SPX functions in legume crops.


Subject(s)
Glycine max/genetics , Phosphates/deficiency , Plant Proteins/metabolism , Adaptation, Physiological , Homeostasis , Phosphorus/deficiency , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Glycine max/growth & development , Glycine max/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Plant Physiol Biochem ; 167: 222-234, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34371392

ABSTRACT

Phosphorus (P) deficiency is considered as a major constraint on crop production. Although a set of adaptative strategies are extensively suggested in soybean (Glycine max) to phosphate (Pi) deprivation, molecular mechanisms underlying reversible protein phosphorylation in soybean responses to P deficiency remains largely unclear. In this study, isobaric tags for relative and absolute quantitation, combined with liquid chromatography and tandem mass spectrometry analysis was performed to identify differential phosphoproteins in soybean roots under Pi sufficient and deficient conditions. A total of 427 phosphoproteins were found to exhibit differential accumulations, with 213 up-regulated and 214 down-regulated. Among them, a nitrate reductase, GmNR4 exhibiting increased phosphorylation levels under low Pi conditions, was further selected to evaluate the effects of phosphorylation on its nitrate reductase activity and subcellular localization. Mutations of GmNR4 phosphorylation levels significantly influenced its activity in vitro, but not for its subcellular localization. Taken together, identification of differential phosphoproteins reveled the complex regulatory pathways for soybean adaptation to Pi starvation through reversible protein phosphorylation.


Subject(s)
Glycine max , Phosphates , Gene Expression Regulation, Plant , Phosphates/metabolism , Phosphorylation , Plant Roots/metabolism , Glycine max/metabolism
13.
Plant Physiol Biochem ; 155: 231-242, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32781273

ABSTRACT

Manganese (Mn) is an essential micronutrient for plant growth. However, excess manganese is toxic and inhibits crop production. Although it is widely known that physiological and molecular mechanisms underlie plant responses to Mn toxicity, few studies have been conducted to compare Mn tolerance capabilities between young and old leaves in plants; thus, the mechanisms underlying Mn tolerance in different plant tissues or organs are not fully understood. In this study, the dose responses of soybean to Mn availability were investigated. Genome-wide transcriptomic analysis was subsequently conducted to identify the differentially expressed genes (DEGs) in both young and old leaves of soybean in responses to Mn toxicity. Our results showed that excess Mn severely inhibited soybean growth and increased both Mn accumulation in and brown spots on soybean leaves, especially for the old leaves, strongly suggesting that more Mn was allocated to old leaves in soybean. Transcriptomic profiling revealed that totals of 4410 and 2258 DEGs were separately identified in young leaves and old leaves. Furthermore, only 944 DEGs were found to be commonly regulated in both young and old leaves of soybean, strongly suggesting distinct responses present in soybean young and old leaves in responses to Mn toxicity.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/genetics , Manganese/toxicity , Plant Leaves/drug effects , Glycine max/drug effects , Transcriptome
14.
Front Plant Sci ; 11: 661, 2020.
Article in English | MEDLINE | ID: mdl-32670306

ABSTRACT

Low phosphate (Pi) availability limits crop growth and yield in acid soils. Although root-associated acid phosphatases (APases) play an important role in extracellular organic phosphorus (P) utilization, they remain poorly studied in soybean (Glycine max), an important legume crop. In this study, dynamic changes in intracellular (leaf and root) and root-associated APase activities were investigated under both Pi-sufficient and Pi-deficient conditions. Moreover, genome-wide identification of members of the purple acid phosphatase (PAP) family and their expression patterns in response to Pi starvation were analyzed in soybean. The functions of both GmPAP7a and GmPAP7b, whose expression is up regulated by Pi starvation, were subsequently characterized. Phosphate starvation resulted in significant increases in intracellular APase activities in the leaves after 4 days, and in root intracellular and associated APase activities after 1 day, but constant increases were observed only for root intracellular and associated APase activities during day 5-16 of P deficiency in soybean. Moreover, a total of 38 GmPAP members were identified in the soybean genome. The transcripts of 19 GmPAP members in the leaves and 17 in the roots were upregulated at 16 days of P deficiency despite the lack of a response for any GmPAP members to Pi starvation at 2 days. Pi starvation upregulated GmPAP7a and GmPAP7b, and they were subsequently selected for further analysis. Both GmPAP7a and GmPAP7b exhibited relatively high activities against adenosine triphosphate (ATP) in vitro. Furthermore, overexpressing GmPAP7a and GmPAP7b in soybean hairy roots significantly increased root-associated APase activities and thus facilitated extracellular ATP utilization. Taken together, these results suggest that GmPAP7a and GmPAP7b might contribute to root-associated APase activities, thus having a function in extracellular ATP utilization in soybean.

15.
BMC Plant Biol ; 20(1): 122, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32188405

ABSTRACT

BACKGROUND: In Arabidopsis, the aluminum (Al) exclusion mechanism is mainly facilitated by ALMT1-mediated malate exudation and MATE-mediated citrate releases from the root. Recently, we have demonstrated that coordinated functioning between an ALMT1-mediated Al exclusion mechanism, via exudation of malate from the root tip, and a NIP1;2-facilitated internal detoxification mechanism, via removal of Al from the root cell wall and subsequent root-to-shoot Al translocation, plays critical roles in achieving overall Al resistance. However, the genetic relationship between ALMT1 and NIP1;2 in these processes remained unclear. RESULTS: Through genetic and physiological analyses, we demonstrate that unlike ALMT1 and MATE, which function independently and additively, ALMT1 and NIP1;2 show an epistatic relationship in Al resistance. These results indicate that ALMT1 and NIP1;2 function in the same biochemical pathway, whereas ALMT1 and MATE in different ones. CONCLUSION: The establishment of the epistatic relationship and the coordinated functioning between the ALMT1 and NIP1;2-mediated exclusion and internal detoxification mechanisms are pivotal for achieving overall Al resistance in the non-accumulating Arabidopsis plant. We discuss and emphasize the indispensable roles of the root cell wall for the implementation of the Al exclusion mechanism and for the establishment of an epistatic relationship between the ALMT1-mediated exclusion mechanism and the NIP1;2-facilitated internal detoxification mechanism.


Subject(s)
Aluminum/metabolism , Aquaporins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epistasis, Genetic , Organic Anion Transporters/genetics , Aquaporins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Inactivation, Metabolic , Organic Anion Transporters/metabolism
16.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652783

ABSTRACT

Phosphorus is one of the mineral nutrient elements essential for plant growth and development. Low phosphate (Pi) availability in soils adversely affects crop production. To cope with low P stress, remodeling of root morphology and architecture is generally observed in plants, which must be accompanied by root cell wall modifications. It has been documented that cell wall proteins (CWPs) play critical roles in shaping cell walls, transmitting signals, and protecting cells against environmental stresses. However, understanding of the functions of CWPs involved in plant adaptation to P deficiency remains fragmentary. The aim of this review was to summarize advances in identification and functional characterization of CWPs in responses to P deficiency, and to highlight the critical roles of CWPs in mediating root growth, P reutilization, and mobilization in plants.


Subject(s)
Adaptation, Physiological , Cell Wall/metabolism , Phosphorus/deficiency , Plant Proteins/metabolism , Plants/metabolism , Phosphorus/metabolism
17.
Plant Physiol Biochem ; 139: 697-706, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31054472

ABSTRACT

Phosphorus (P) is a major constituent of biomolecules in plant cells, and is an essential plant macronutrient. Low phosphate (Pi) availability in soils is a major constraint on plant growth. Although a complex variety of plant responses to Pi starvation has been well documented, few studies have integrated both global transcriptome and metabolome analyses to shed light on molecular mechanisms underlying metabolic responses to P deficiency. This study is the first time to investigate global profiles of metabolites and transcripts in soybean (Glycine max) roots subjected to Pi starvation through targeted liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS/MS) and RNA-sequencing analyses. This integrated analysis allows for assessing coordinated transcriptomic and metabolic responses in terms of both pathway enzyme expression and regulatory levels. Between two Pi availability treatments, a total of 155 metabolites differentially accumulated in soybean roots, of which were phosphorylated metabolites, flavonoids and amino acids. Meanwhile, a total of 1644 differentially expressed genes (DEGs) were identified in soybean roots, including 1199 up-regulated and 445 down-regulated genes. Integration of metabolome and transcriptome analyses revealed Pi starvation responsive connection between specific metabolic processes in soybean roots, especially metabolic processes involving phosphorylated metabolites (e.g., phosphorylated lipids and nucleic acids). Taken together, this study suggests that complex molecular responses scavenging internal Pi from phosphorylated metabolites are typical adaptive strategies soybean roots employ as responses to Pi starvation. Identified DEGs will provide potential target region for future efforts to develop P-efficient soybean cultivars.


Subject(s)
Glycine max/genetics , Glycine max/metabolism , Metabolome/physiology , Phosphorus/deficiency , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics
18.
Genes (Basel) ; 10(5)2019 05 27.
Article in English | MEDLINE | ID: mdl-31137896

ABSTRACT

Proton toxicity is one of the major environmental stresses limiting crop production and becomes increasingly serious because of anthropogenic activities. To understand acid tolerance mechanisms, the plant growth, mineral nutrients accumulation, and global transcriptome changes in soybean (Glycine max) in response to long-term acidity stress were investigated. Results showed that acidity stress significantly inhibited soybean root growth but exhibited slight effects on the shoot growth. Moreover, concentrations of essential mineral nutrients were significantly affected by acidity stress, mainly differing among soybean organs and mineral nutrient types. Concentrations of phosphorus (P) and molybdenum (Mo) in both leaves and roots, nitrogen (N), and potassium (K) in roots and magnesium (Mg) in leaves were significantly decreased by acidity stress, respectively. Whereas, concentrations of calcium (Ca), sulfate (S), and iron (Fe) were increased in both leaves and roots. Transcriptome analyses in soybean roots resulted in identification of 419 up-regulated and 555 down-regulated genes under acid conditions. A total of 38 differentially expressed genes (DEGs) were involved in mineral nutrients transportation. Among them, all the detected five GmPTs, four GmZIPs, two GmAMTs, and GmKUPs, together with GmIRT1, GmNramp5, GmVIT2.1, GmSKOR, GmTPK5, and GmHKT1, were significantly down-regulated by acidity stress. Moreover, the transcription of genes encoding transcription factors (e.g., GmSTOP2s) and associated with pH stat metabolic pathways was significantly up-regulated by acidity stress. Taken together, it strongly suggests that maintaining pH stat and mineral nutrient homeostasis are adaptive strategies of soybean responses to acidity stress, which might be regulated by a complex signaling network.


Subject(s)
Glycine max/genetics , Plant Proteins/genetics , Plant Roots/genetics , Stress, Physiological/genetics , Acids/toxicity , Adaptation, Physiological/genetics , Nutrients/genetics , Nutrients/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/drug effects , Potassium/metabolism , Glycine max/growth & development , Transcriptome/genetics
19.
Int J Mol Sci ; 19(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261621

ABSTRACT

Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, only fragmentary information is available in regard to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis in soybean nodules grown under P-sufficient (500 µM KH2PO4) and P-deficient (25 µM KH2PO4) conditions to investigate molecular mechanisms underlying soybean (Glycine max) nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of (differentially expressed genes) DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including eight Pi transporters (PTs), eight genes coding proteins containing the SYG1/PHO81/XPR1 domain (SPXs), and 16 purple acid phosphatases (PAPs). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway, are involved in maintaining Pi homeostasis in nodules.


Subject(s)
Gene Expression Profiling/methods , Genome, Plant/genetics , Glycine max/genetics , Homeostasis , Phosphates/metabolism , Root Nodules, Plant/genetics , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Phosphorus/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Root Nodules, Plant/metabolism , Glycine max/metabolism
20.
Plant Cell Environ ; 41(12): 2821-2834, 2018 12.
Article in English | MEDLINE | ID: mdl-30066375

ABSTRACT

As a major component of soil organic phosphorus (P), phytate-P is unavailable to plants unless hydrolysed by phytase to release inorganic phosphate. However, knowledge on natural variation in root-associated phytase activity and its underlying molecular mechanisms in plants remains fragmentary. In this study, variations in root internal and associated phytase activity were observed among 39 genotypes of Stylosanthes guianensis (Stylo), which is well adapted to acid soils. Furthermore, TPRC2001-1, the genotype with the highest root-associated phytase activity, was more capable of utilizing extracellular phytate-P than Fine-stem, the genotype with the lowest root-associated phytase activity. After protein liquid chromatography-tandem mass spectrometry analysis, a purple acid phosphatase (PAP), SgPAP23, was identified and cloned from TPRC2001-1. SgPAP23 exhibited high activity against phytate-P and was mainly localized on the plasma membrane. Furthermore, SgPAP23 overexpression resulted in significant increases of root-associated phytase activity and thus facilitated extracellular phytate-P utilization in both bean (Phaseolus vulgaris) hairy roots and Arabidopsis thaliana. The results herein support the conclusion that SgPAP23 is a primary contributor to the superior extracellular phytate-P utilization in stylo and thus is used to develop cultivars with efficient extracellular phytate-P utilization.


Subject(s)
Acid Phosphatase/metabolism , Fabaceae/enzymology , Phytic Acid/metabolism , Plant Proteins/metabolism , Plant Roots/enzymology , 6-Phytase/metabolism , Arabidopsis , Chromatography, Liquid , Cloning, Molecular , Fabaceae/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...