Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995016

ABSTRACT

Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.


Subject(s)
Adaptor Proteins, Signal Transducing , Classical Swine Fever Virus , Interferon Regulatory Factor-1 , TNF Receptor-Associated Factor 1 , Up-Regulation , Animals , Classical Swine Fever Virus/physiology , TNF Receptor-Associated Factor 1/metabolism , TNF Receptor-Associated Factor 1/genetics , Swine , Up-Regulation/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Signal Transduction , Classical Swine Fever/virology , Classical Swine Fever/metabolism , Classical Swine Fever/genetics , Virus Replication , Cell Line , Cytokines/metabolism , Protein Binding
2.
Environ Pollut ; 337: 122555, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37714402

ABSTRACT

Revealing the spatial features and source of associated potentially toxic elements (PTEs) is crucial for the safe use of selenium (Se)-rich soils. An integrative risk assessment (GRRRA) approach based on geostatistical analysis (GA), random forest (RF), and receptor models (RMs) was first established to investigate the spatial distribution, sources, and potential ecological risks (PER) of PTEs in 982 soils from Ziyang City, a typical natural Se-rich area in China. RF combined with multiple RMs supported the source apportionment derived from the RMs and provided accurate results for source identification. Then, quantified source contributions were introduced into the risk assessment. Eighty-three percent of the samples contain Cd at a high PER level in local Se-rich soils. GA based on spatial interpolation and spatial autocorrelation showed that soil PTEs have distinct spatial characteristics, and high values are primarily distributed in this research areas. Absolute principal component score/multiple line regression (APCS/MLR) is more suitable than positive matrix factorization (PMF) for source apportionment in this study. RF combined with RMs more accurately and scientifically extracted four sources of soil PTEs: parent material (48.91%), mining (17.93%), agriculture (8.54%), and atmospheric deposition (24.63%). Monte Carlo simulation (MCS) demonstrates a 47.73% probability of a non-negligible risk (RI > 150) caused by parent material and 3.6% from industrial sources, respectively. Parent material (64.20%, RI = 229.56) and mining (16.49%, RI = 58.96) sources contribute to the highest PER of PTEs. In conclusion, the GRRRA method can comprehensively analyze the distribution and sources of soil PTEs and effectively quantify the source contribution to PER, thus providing the theoretical foundation for the secure utilization of Se-rich soils and environmental management and decision making.


Subject(s)
Metals, Heavy , Selenium , Soil Pollutants , Soil , Selenium/toxicity , Selenium/analysis , Metals, Heavy/analysis , Environmental Monitoring/methods , Random Forest , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment/methods , China
3.
Sci Total Environ ; 892: 164433, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37245815

ABSTRACT

Although the issue has been of much concern and has subsequently been controlled for years, the environmental risk of excess selenium (Se) in farmlands still has not been eliminated in Se-toxicity areas. Different types of farmland utilization can change Se behavior in soil. Thus, located field monitoring and surveys of various farmland soils in and around typical Se-toxicity areas spanning eight years were conducted in the tillage layer and deeper soils. The source of new Se contamination in farmlands was traced along the irrigation and natural waterway. This research indicated that 22 % of paddy fields increased to Se-toxicity in surface soil led by irrigation with high-Se river water. Selenate is the dominant Se species in rivers (90 %) originating from geological background areas with high Se. Both soil organic matter (SOM) and amorphous iron content played important roles in the fixation of input Se. Thus, available Se was increased by more than twofold in paddy fields. The release of residual Se and eventual bounding by organic matter is commonly observed, thus suggesting that stable soil Se availability seems sustainable for a long time. This study is the first report in China that shows how new soil Se-toxicity farmland is caused by high-Se water irrigation. This research warns that external attention should be paid to the selection of irrigation water in high-Se geological background areas to avoid new Se contamination.


Subject(s)
Oryza , Selenium , Soil Pollutants , Selenium/toxicity , Selenium/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Iron , China , Water
4.
Chemosphere ; 319: 137992, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36720411

ABSTRACT

The poor colloidal stability of magnetite nanoparticles (MNPs) limits their mobility and application, so various organic coatings (OCs) were applied to MNPs. Here, a comparative study on the colloidal stability of MNPs coated with acetic (HAc) and polyacrylic acids (PAA) was conducted under varied pH (5.0-9.0) in the presence of different concentrations of cations and anions, as well as humic acid (HA). Comparing the effects of various cations and anions, the stability of both HAc/PAA-MNPs followed the order: Na+ > Ca2+and PO43- > SO42- > Cl-, which could be explained by their adsorption behaviors onto HAc/PAA-MNPs and the resulting surface charge changes. Under all conditions even with more anion adsorption onto HAc-MNPs (0.14-22.56 mg/g) than onto PAA-MNPs (0.04-18.34 mg/g), PAA-MNPs were more negatively charged than HAc-MNPs, as PAA has a lower pHIEP (2.6 ± 0.1) than that of HAc (3.7 ± 0.1). Neither the HAc nor PAA coatings were displaced by phosphate even at considerably high phosphate concentration. Compared with HAc-MNPs, the stability of PAA-MNPs was greatly improved under all studied conditions, which could be due to both stronger electrostatic and additional steric repulsion forces among PAA-MNPs. Besides, under all conditions, Derjaguin-Landau-Verwey-Overbeek (DLVO) explained well the aggregation kinetic of HAc-MNPs; while extended DLVO (EDLVO) successfully predict that of PAA-MNPs, indicating steric forces among PAA-MNPs. The aggregation of HAc/PAA-MNPs was all inhibited in varied electrolyte solutions by HA (2 mg C/L) addition. This study suggested that carboxyl coatings with higher molecular weights and pKa values could stabilize MNPs better due to stronger electrostatic and additional steric repulsion. However, in the presence of HA, these two forces were mainly controlled by adsorbed HA instead of the organic pre-coatings on MNPs.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Humic Substances/analysis , Magnetite Nanoparticles/chemistry , Electrolytes/chemistry , Cations , Phosphates , Hydrogen-Ion Concentration , Nanoparticles/chemistry
5.
J Hazard Mater ; 445: 130467, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36495638

ABSTRACT

Lack systematic understanding of differences in environmental behavior of selenium between paddy and dryland soils affects Se biofortification and leads to human Se-related health risks. Therefore, this study investigated differences in Se concentration and bioavailability between paddy and dryland soils using data collected from literatures and field sampling. Our analysis showed paddy soil Se concentration in Se-rich area of China was significantly lower than that in dryland soil. Selenium biological concentration factor of rice grain (BCFgrain) in Se-rich area was lower than that in non-Se-rich area attributed to higher percentage of selenite in available Se. Concentration and percentage of available Se were in dryland soil lower than those in paddy soil and this affected BCFgrain of maize, whereas BCFgrain of rice was further influenced by its Se transport capacity. The ranges of Se concentration in Se-rich paddy (0.14-3.63 mg kg-1) and dryland (0.45-1.17 mg kg-1) soils were derived using a linear regression model. The current soil Se concentration evaluation standard was only suitable for dryland but overestimated Se-deficiency and Se-toxicity levels in paddy field. The present study provides theoretical foundations for understanding Se concentrations and bioavailability in soils and selecting efficient and safe approach on cultivated land use.


Subject(s)
Oryza , Selenium , Soil Pollutants , Humans , Soil , Selenium/analysis , Biological Availability , Selenious Acid , China , Edible Grain/chemistry , Soil Pollutants/analysis
6.
Front Plant Sci ; 13: 988627, 2022.
Article in English | MEDLINE | ID: mdl-36186067

ABSTRACT

A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.

7.
J Clin Lab Anal ; 36(8): e24596, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35808928

ABSTRACT

OBJECTIVES: The aim of this study was to compare the correlation of gamma-glutamyl transpeptidase-to-platelet ratio (GPR), aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis index-4 (FIB-4), and liver stiffness measurement (LSM) in the diagnosis of liver fibrosis, and perform a diagnostic value of GPR for predicting fibrosis in CHB patients with NAFLD. METHODS: A retrospective study was conducted on CHB patients concurrent with NAFLD between September 2019 and December 2020. They were divided into control group (LSM ≤ 9.7 kpa) and fibrosis group (LSM ≥ 9.8 kpa). Demographic data were collected; ALT, AST, and PLT were also detected. LSM was measured by transient elastography (TE). The GPR, APRI, and FIB-4 were calculated. The correlation between GPR, APRI, FIB-4, and LSM was compared. The accuracy of predicting liver fibrosis using GPR, APRI, and FIB-4 was assessed. RESULTS: Eighty-five CHB patients with NAFLD were enrolled. Multivariate analysis showed that age (p = 0.005), GGT (p = 0.001), and PLT (p = 0.013) were the independent risk factors for LSM. The GPR (p = 0.008), APRI (p = 0.001), and FIB-4 (p = 0.001) values in fibrosis group were higher than control group. Pearson linear correlation was used to analyze the correlations between LSM and GPR, APRI, and FIB-4. LSM was correlated with GPR, APRI, and FIB-4. The AUCs of GPR, APRI, and FIB4 were 0.805, 0.766, and 0.826 in assessing liver fibrosis, respectively. No significant differences in the areas of GPR were comparable to that of APRI and FIB-4. CONCLUSION: GPR has a good correlation with LSM in assessing liver fibrosis and can be used as a noninvasive index for the assessment of liver fibrosis in patients with concomitant CHB and NAFLD.


Subject(s)
Hepatitis B, Chronic , Non-alcoholic Fatty Liver Disease , Biomarkers , Biopsy/adverse effects , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Humans , Liver Cirrhosis/complications , Non-alcoholic Fatty Liver Disease/complications , Platelet Count , ROC Curve , Retrospective Studies , Severity of Illness Index , gamma-Glutamyltransferase
8.
Front Cell Dev Biol ; 10: 883314, 2022.
Article in English | MEDLINE | ID: mdl-35676935

ABSTRACT

Spermatogonial stem cells are the foundation of continuous spermatogenesis in adult mammals. Xenograft models have been established to define human SSCs, mostly using infertile and immune-deficient mice as the recipients for human germ cell transplantation. However, it is time-consuming to prepare such recipients using irradiation or chemotherapeutic agents, and this approach may also introduce confounding factors when residual endogenous germ cells recover in transplanted recipients. It remains to be determined whether immune-competent genetically infertile mice can be suitable recipients for xenotransplantation. In this study, we observed similar engraftment efficiencies when using spermatogonia from human biopsied testes across immune-deficient nude mice, immune-competent ICR mice, and genetically infertile Kit w/w-v mice, suggesting minimal immunological rejection from immune-competent mouse recipients upon xenotransplantation of human germ cells. More importantly, we derived EpCAM negative and TNAP positive spermatogonia-like cells (SLCs) from human pluripotent stem cells (PSCs), which highly expressed spermatogonial markers including PLZF, INTERGRINα6, TKTL1, CD90, and DRMT3. We found that upon transplantation, these SLCs proliferated and colonized at the basal membrane of seminiferous tubules in testes of both immune-deficient nude mice and Kit w/w-v mice, though complete spermatogenesis would likely require supporting human signaling factors and microenvironment. Taken together, our study functionally defined the cell identity of PSC-derived SLCs, and supported xenotransplantation using genetically infertile recipients as a convenient model for functionally evaluating spermatogonia derived from different species.

9.
Environ Sci Pollut Res Int ; 28(34): 46852-46876, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34254235

ABSTRACT

Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.


Subject(s)
Mercury , Selenium , Soil Pollutants , Rhizosphere , Soil , Soil Pollutants/analysis
10.
Environ Sci Pollut Res Int ; 28(45): 64475-64487, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34312758

ABSTRACT

Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.


Subject(s)
Selenious Acid , Selenium , Cadmium , Humans , Selenic Acid , Sodium Selenite , Soil
11.
Huan Jing Ke Xue ; 42(4): 2024-2030, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742837

ABSTRACT

This study explored the discrepancy in the detoxification effects of different exogenous selenium (Se) species in cadmium (Cd)-contaminated soil to provide a scientific basis for the control of Cd pollution in the soil and the safe production of crops. A pot experiment was conducted to compare the effects of different concentrations (0, 0.5, 1.0, and 2.5 mg·kg-1) of selenite and selenate on the growth (root length, shoot height, biomass, and photosynthetic parameters), uptake, and translocation of Cd on pak choi in Cd-contaminated soil. The results indicated that the detoxification effect of a low Se concentration (≤1.0 mg·kg-1) treatment on Cd was better than that with a high Se concentration (2.5 mg·kg-1) treatment, and the selenite treatment demonstrated a greater detoxification effect on Cd than the corresponding selenate treatment. Meanwhile, the application of low-concentration selenite and selenate both increased the SPAD value, Pn, Gs, Ci, biomass, and shoot length of the pak choi, and the 1.0 mg·kg-1 selenite treatment had the most significant (P<0.05) effect (except Ci). Nevertheless, the photosynthetic parameters of the pak choi under the high-concentration Se were significantly lower than those under the low Se concentration treatment (except Tr, P<0.05). Compared with the treatment without Se (control), the uptake of Cd in the pak choi was reduced under different Se treatments. Compared with the control, the Cd concentration in the shoots of the pak choi treated with 1.0 mg·kg-1 of selenite and selenate decreased by 40.0% and 20.5% (P<0.05), respectively. In addition, the translocation of Cd from the root to the shoot was significantly reduced under the 0.5 mg·kg-1 selenate treatment, while the high-concentration treatments of either exogenous Se promoted the translocation of Cd. Overall, applying the appropriate amount of exogenous Se could promote the photosynthesis and biomass of pak choi, and reduce the accumulation of Cd in pak choi. Therefore, the 1.0 mg·kg-1 selenite treatment is recommended for the control and safe utilization of Cd in Cd-contaminated soil.


Subject(s)
Brassica , Selenium , Soil Pollutants , Cadmium/toxicity , Selenic Acid , Soil , Soil Pollutants/analysis
12.
J Cell Mol Med ; 25(5): 2377-2389, 2021 03.
Article in English | MEDLINE | ID: mdl-33496386

ABSTRACT

The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics.


Subject(s)
Cell Differentiation/genetics , Erythroid Precursor Cells/metabolism , Gene Expression Regulation, Developmental , MicroRNAs/genetics , RNA Interference , Serine Endopeptidases/genetics , 3' Untranslated Regions , Animals , Biomarkers , Cell Line , Cells, Cultured , Erythroid Precursor Cells/cytology , Erythropoiesis/genetics , Immunophenotyping , Mice
13.
Water Sci Technol ; 83(2): 257-270, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33504692

ABSTRACT

This paper presents a study of V and N co-doping TiO2 embedding multi-walled carbon nanotubes (MWCNTs) supported on γ-Al2O3 pellet (V/N-TiO2-MWCNTs/γ-Al2O3) composite photocatalyst induced by pulsed discharge plasma to enhance the removal of acid orange II (AO7) from aqueous solution. The photocatalytic activity of the V/N-TiO2-MWCNTs/γ-Al2O3 composite to AO7 removal induced by the pulsed discharge plasma was evaluated. The results indicate that the V/N-TiO2-MWCNTs/γ-Al2O3 composite possesses enhanced photocatalytic activity that facilitates the removal of AO7 compared with the TiO2-MWCNTs/γ-Al2O3 and TiO2/γ-Al2O3 composites. Almost 100% of AO7 is removed after 10 min under optimal conditions. The V0.10/N0.05-TiO2-MWCNTs/γ-Al2O3 photocatalyst exhibits the best removal effect for AO7. Analysis of the removal mechanism indicates that the enhancement of the removal of AO7 resulting from V and N co-doping causes TiO2 lattice distortion and introduces a new impurity energy level, which not only reduces the band gap of TiO2 but also inhibits the recombination of the ecb-/hvb+ pairs.


Subject(s)
Nanotubes, Carbon , Azo Compounds , Catalysis , Naphthalenes , Plasma , Titanium
14.
Sci Total Environ ; 770: 144664, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33513517

ABSTRACT

Selenium (Se) content of crops depends on the local soil Se content and/or its bioavailability, and identifying the influence factors of soil Se bioavailability is a significant basis for adopting targeted agronomic measures to improve the Se nutritional status of humans. In this study, the main wheat-producing region in Shaanxi province with similar parent material and climate conditions was selected as the study area. The total Se contents of 602 soil samples and their corresponding wheat grains were determined, and the distribution characteristics of soil Se bioavailability and its dominant influential factors were investigated. Results showed that the total Se content ranged from 0.02 mg/kg to 1.67 mg/kg (average of 0.25 ± 0.25 mg/kg) in soil, which was lower than that content in China (0.29 mg/kg). The Se content of wheat grain was 0.001-1.50 mg/kg (average of 0.11 ± 0.19 mg/kg). The distribution trend of the Se content in wheat grains was different from that of the total soil Se, but it was consistent with the distribution of soil bioavailable Se content. The bioavailable Se accounted for 11.1% of the total soil Se. This could be attributed to relatively high soil Se bioavailability of the study area belonging to alkaline soil (with a pH of approximately 8). Both redundancy analysis and path analysis revealed that soil pH and organic matter were the dominant influential factors of soil Se bioavailability in Shaanxi wheat-producing area, and the soil Se bioavailability increased with these two parameters raising. On this basis, a prediction model was established to predict the Se content in wheat grain. The results show that the various agronomic measures could be used to produce Se-enriched wheat by regulating the soil pH and the organic matter content in Se biofortification practice.


Subject(s)
Selenium , Soil , Biological Availability , China , Humans , Selenium/analysis , Triticum
15.
Food Chem ; 338: 127661, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32882487

ABSTRACT

Understanding the effects of processing on the Se content and bioaccessibility in food is critical in guiding the development of Se-enriched products. In this study, Se-enriched Pleurotus eryngii was obtained by applying different Se supplements to the substrate. Selenium content and its bioaccessibility among raw and processed fruit bodies were compared. The application of exogenous Se had no significant effect on the yield of P. eryngii, while amendment Se yeast could slightly promote the growth of P. eryngii. The enrichment ability of P. eryngii among different Se supplements declined in the order of Na2SeO3 > Se yeast > Na2SeO4. However, the processing treatments resulted in 6.6%-45.9% Se loss. The Se bioaccessibility of P. eryngii was 78.4%-89.7%. Frying treatment reduced Se bioaccessibility in samples, whereas boiling treatment enhanced it. Therefore, Se yeast and boiling treatment are recommended as the ideal Se supplement and processing method for Se-enriched P. eryngii.


Subject(s)
Pleurotus/chemistry , Selenium/chemistry , Biotransformation , Dietary Supplements/analysis , Pleurotus/growth & development , Pleurotus/metabolism , Selenium/metabolism , Yeast, Dried/chemistry
16.
Ecotoxicol Environ Saf ; 207: 111544, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33254403

ABSTRACT

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.


Subject(s)
Selenium/metabolism , Soil Pollutants/metabolism , Triticum/metabolism , Antioxidants/metabolism , Biological Transport , Biomass , Edible Grain/metabolism , Plant Leaves/metabolism , Selenic Acid/metabolism , Selenious Acid/metabolism , Selenium Compounds/metabolism
17.
Sci Total Environ ; 762: 143119, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33158520

ABSTRACT

Selenium (Se) bioaccessibility in soil and crops from seleniferous areas is closely relevant to Se intake risks of local residents. The current in vitro digestion methods used for Se bioaccessibility evaluation are single and inconsistent, and most of them are only for food and neglect soil. In this study, 14 Se-contaminated soils and their corresponding crops in Naore Village (seleniferous area) were used as the research objects. Four in vitro digestion assays, including Solubility Bioaccessibility Research Consortium method (SBRC), physiologically-based extraction test (PBET), in vitro gastrointestinal method (IVG), and Unified Bioaccessibility Method (UBM) were used to determine the bioaccessible Se concentration in soil and edible parts of crops. Results showed that the Se in natural seleniferous soil mainly existed in relatively stable forms, i.e., residual and Fe-Mn oxide-bound Se (average of 80%). Only 10.6% of the total Se was distributed in water-soluble and exchangeable Se fractions. The Se content in crops was significantly positively correlated with the organic-bound and phosphate-extractable Se contents in the corresponding soil (p < 0.05). The organic-bound Se was clearly a potentially bioavailable Se source in soil. The Se bioaccessibility in soil and crops measured using the four in vitro methods in gastric/intestinal digestions were in the same order, which was PBET > UBM > SBRC > IVG. Similar to the absorption and utilization of soil Se fractions by crops, the water-soluble, organic-bound and exchangeable Se in soil were the main contributors of bioaccessible Se in the digestive juices in various in vitro methods. Furthermore, the bioaccessible Se in crops and soil measured via PBET method demonstrated the most significant correlation between the total Se in crops and the phosphate-extractable Se in soil. Therefore, the PBET method was the optimum in vitro method for the evaluation of Se bioaccessibility in crops and soil.


Subject(s)
Selenium , Soil Pollutants , Biological Availability , Crops, Agricultural , Environmental Pollution , Soil , Soil Pollutants/analysis
18.
Sci Total Environ ; 763: 143047, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33129537

ABSTRACT

Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA). Simultaneous application of either cow or chicken manure with selenite could result in the decrease of Se availability in the soil. Isolating Se available fraction into DOM-Se fractions showed that low-molecular-weight DOM-Se as an available fraction and even HY-Se as a less available fraction (OM-Se) were likely the major sources for Brassica juncea (L.) Czern. et Coss uptake in soil. Moreover, knowledge of the DOM-Se composition, especially the low-molecular-weight DOM-Se fractions, is important for assessing the bioavailability of Se in soil, the results of which are more accurate than the chemical extraction method. The high value of Pearson correlation coefficients between CDGT-Se and Se concentrations in shoots, tubers and roots of Brassica juncea (L.) Czern. et Coss in cow and chicken manures treatment were 0.95 and 0.99, 0.96 and 0,96, and 0.89 and 0.97 (p < 0,05), respectively, indicating that DGT-Se can reflect the Se uptake ability by plants and can be used to predict the bioavailability of Se when manure and selenite are simultaneously applied.


Subject(s)
Selenium , Soil Pollutants , Biological Availability , Manure , Selenious Acid , Soil , Soil Pollutants/analysis
19.
Environ Sci Pollut Res Int ; 27(32): 40826-40836, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32677009

ABSTRACT

In this paper, metallic copper (Cu) was supported on nanoscale zero-valent iron (nZVI) to form a nanoscale bimetallic composite (nZVI-Cu), which was used to activate persulfate (PS) to simultaneously remove the compound contaminants Cr(VI) and tetracycline hydrochloride (TCH) in simulated wastewater. nZVI, nZVI-Cu, and nZVI-Cu-activated PS (nZVI-Cu/PS) were characterized by SEM, TEM, XRD, and XPS. The effects of the bimetallic composite on Cr(VI) and TCH removal were compared in the nZVI, nZVI-activated PS (nZVI/PS), nZVI-Cu, and nZVI-Cu/PS systems. The results showed that nZVI and Cu can form a nanobimetallic system, which can create galvanic cells; thus, the galvanic corrosion of nZVI and the transfer of electrons are accelerated. For a single contaminant, the removal efficiency of Cr(VI) and TCH is the highest when nZVI is loaded with 3 wt% and 1 wt% Cu, respectively. The ratio of nZVI-Cu with 3 wt% Cu to PS is 7:1, and the removal efficiency of Cr(VI) and TCH compound contaminants is ~ 100% after 60 min under acidic conditions, which indicates that the Cr(VI) reduction and TCH oxidation were complete in the nZVI-Cu/PS system. The mechanisms of simultaneous removal of Cr(VI) and TCH in the nZVI-Cu/PS system are proposed. The removal of Cr is because of the adsorption-reduction effects of the nZVI-Cu bimetallic material. The degradation of TCH is mainly due to the action of oxidative free radicals generated by Fe2+-activated PS. The free radical capture experiments showed that SO- 4· plays a major role in the process of TCH degradation.


Subject(s)
Chromium , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Copper , Iron , Tetracycline , Wastewater , Water Pollutants, Chemical/analysis
20.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575410

ABSTRACT

Sertoli cells are somatic supporting cells in spermatogenic niche and play critical roles in germ cell development, but it is yet to be understood how epigenetic modifiers regulate Sertoli cell development and contribution to spermatogenesis. BRG1 (Brahma related gene 1) is a catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex and participates in transcriptional regulation. The present study aimed to define the functions of BRG1 in mouse Sertoli cells during mouse spermatogenesis. We found that BRG1 protein was localized in the nuclei of both Sertoli cells and germ cells in seminiferous tubules. We further examined the requirement of BRG1 in Sertoli cell development using a Brg1 conditional knockout mouse model and two Amh-Cre mouse strains to specifically delete Brg1 gene from Sertoli cells. We found that the Amh-Cre mice from Jackson Laboratory had inefficient recombinase activities in Sertoli cells, while the other Amh-Cre strain from the European Mouse Mutant Archive achieved complete Brg1 deletion in Sertoli cells. Nevertheless, the conditional knockout of Brg1 from Sertoli cells by neither of Amh-Cre strains led to any detectable abnormalities in the development of either Sertoli cells or germ cells, suggesting that BRG1-SWI/SNF complex is dispensable to the functions of Sertoli cells in spermatogenesis.


Subject(s)
DNA Helicases/genetics , DNA Helicases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sertoli Cells/metabolism , Testis/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Seminiferous Tubules/metabolism , Sex Differentiation , Spermatogenesis , Spermatozoa/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL