Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.071
Filter
1.
Phytomedicine ; 130: 155724, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38759317

ABSTRACT

BACKGROUND: The identification of a novel and effective strategy for the clinical treatment of acute leukemia (AL) is a long-term goal. Minnelide, a water-soluble prodrug of triptolide, has recently been evaluated in phase I and II clinical trials in patients with multiple cancers and has shown promise as an antileukemic agent. However, the molecular mechanism underlying minnelide's antileukemic activity remains unclear. PURPOSE: To explore the molecular mechanisms by which minnelide exhibits antileukemic activity. METHODS: AL cells, primary human leukemia cells, and a xenograft mouse model were treated with triptolide and minnelide. The molecular mechanism was elucidated using western blotting, immunoprecipitation, flow cytometry, GSEA and liquid chromatography-mass spectrometry analysis. RESULTS: Minnelide was highly effective in inhibiting leukemogenesis and improving survival in two complementary AL mouse models. Triptolide, an active form of minnelide, causes cell cycle arrest in G1 phase and induces apoptosis in both human AL cell lines and primary AL cells. Mechanistically, we identified Ars2 as a new chemotherapeutic target of minnelide for AL treatment. We found that triptolide directly targeted Ars2, resulting in the downregulation of miR-190a-3p, which led to the disturbance of PTEN/Akt signaling and culminated in G1 cell cycle arrest and apoptosis. CONCLUSIONS: Our findings demonstrate that targeting Ars2/miR-190a-3p signaling using minnelide could represent a novel chemotherapeutic strategy for AL treatment and support the evaluation of minnelide for the treatment of AL in clinical trials.

2.
Anal Chem ; 96(19): 7669-7678, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708542

ABSTRACT

Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.


Subject(s)
Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Cell Movement , Cell Adhesion Molecules/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Matrix Metalloproteinase 14/metabolism
3.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article in English | MEDLINE | ID: mdl-38760586

ABSTRACT

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Subject(s)
Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
4.
Neural Plast ; 2024: 2512796, 2024.
Article in English | MEDLINE | ID: mdl-38585306

ABSTRACT

Background: Stroke is a common and frequently occurring disease among middle-aged and elderly people, with approximately 55%-75% of patients remaining with upper limb dysfunction. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. Objectives: This study aimed to investigate whether high-definition transcranial direct current stimulation (HD-tDCS) of the primary motor cortex (M1) functional area in poststroke patients in the subacute phase is more effective in improving upper limb function than conventional tDCS. Methods: This randomized, sham-controlled clinical trial included 69 patients with subcortical stroke. They were randomly divided into the HD-tDCS, anodal tDCS (a-tDCS), and sham groups. Each group received 20 sessions of stimulation. The patients were assessed using the Action Research Arm Test, Fugl-Meyer score for upper extremities, Motor Function Assessment Scale, and modified Barthel index (MBI) pretreatment and posttreatment. Results: The intragroup comparison scores improved after 4 weeks of treatment. The HD-tDCS group showed a slightly greater, but nonsignificant improvement as compared to a-tDCS group in terms of mean change observed in function of trained items. The MBI score of the HD-tDCS group was maintained up to 8 weeks of follow-up and was higher than that in the a-tDCS group. Conclusion: Both HD-tDCS and a-tDCS can improve upper limb motor function and daily activities of poststroke patients in the subacute stage. This trial is registered with ChiCTR2000031314.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Aged , Middle Aged , Humans , Recovery of Function , Stroke/therapy , Upper Extremity , Treatment Outcome
5.
Hell J Nucl Med ; 27(1): 46-54, 2024.
Article in English | MEDLINE | ID: mdl-38678384

ABSTRACT

OBJECTIVE: Recent studies have utilized fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) specifically to diagnose cases of idiopathic inflammatory myopathies (IIM), excluding inclusion body myositis (IBM). Conversely, carbon-11 (11C) labeled Pittsburgh compound B (PIB)-PET imaging is exclusively used for the detection of IBM. This research is designed to evaluate the diagnostic accuracy of PET/CT in identifying IIM by employing rigorous diagnostic accuracy testing methodologies. MATERIALS AND METHODS: A systematic review and meta-analysis were conducted across multiple databases including PubMed, and Embase. We focused on the diagnostic utility of PET/CT in IIM, assessing sensitivities, specificities, and deriving likelihood ratios (LR+ and LR-). The study was registered with PROSPERO (CRD42022343222). RESULTS: This systematic review identified 635 citations, of which 10 eligible trials were included, with a total of 419 participants. The results indicated a sensitivity of 0.86 (0.81-0.90), and a specificity of 0.93 (0.88-0.96). The synthesis of LR revealed the LR+ of 10.35 (6.31-16.98), and LR-of 0.15 (0.07-0.32). The summary receiver operating characteristic curve (SROC) showed an area under the curve (AUC) of 0.9658. Regarding IBM, the sensitivity was 0.84 (0.60-0.97), and the specificity was 1 (0.69-1). The synthesis of LR showed the LR+ of 9.61 (1.46-63.15) and an LR- of 0.21 (0.09-0.51). For disease activity, the sensitivity was 0.96 (0.92-0.99), and the specificity was 0.91 (0.084-0.96). The synthesis of LR showed an LR+ of 9.43 (5.39-16.51) and an LR- of 0.05 (0.02-0.11). CONCLUSION: Positron emission tomography/CT has great potential for accurately diagnosing and monitoring patients with IIM, and may have implications for their clinical management.


Subject(s)
Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Sensitivity and Specificity , Myositis/diagnostic imaging , Reproducibility of Results , Male , Female
6.
Sci Rep ; 14(1): 9132, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644379

ABSTRACT

The diaphragm is a unique skeletal muscle due to its continuous activation pattern during the act of breathing. The ontogeny of macrophages, pivotal cells for skeletal muscle maintenance and regeneration, is primarily based on two distinct origins: postnatal bone marrow-derived monocytes and prenatal embryonic progenitors. Here we employed chimeric mice to study the dynamics of these two macrophage populations under different conditions. Traditional chimeric mice generated through whole body irradiation showed virtually complete elimination of the original tissue-resident macrophage pool. We then developed a novel method which employs lead shielding to protect the diaphragm tissue niche from irradiation. This allowed us to determine that up to almost half of tissue-resident macrophages in the diaphragm can be maintained independently from bone marrow-derived monocytes under steady-state conditions. These findings were confirmed by long-term (5 months) parabiosis experiments. Acute diaphragm injury shifted the macrophage balance toward an overwhelming predominance of bone marrow (monocyte)-derived macrophages. However, there was a remarkable reversion to the pre-injury ontological landscape after diaphragm muscle recovery. This diaphragm shielding method permits analysis of the dynamics of macrophage origin and corresponding function under different physiological and pathological conditions. It may be especially useful for studying diseases which are characterized by acute or chronic injury of the diaphragm and accompanying inflammation.


Subject(s)
Diaphragm , Homeostasis , Macrophages , Animals , Macrophages/metabolism , Mice , Monocytes , Muscle, Skeletal/metabolism , Regeneration , Mice, Inbred C57BL , Whole-Body Irradiation , Male
7.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565573

ABSTRACT

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Subject(s)
Glucose , Platelet-Derived Growth Factor , Glucose Transporter Type 1/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Membrane/metabolism , Glucose/metabolism , Transport Vesicles/metabolism
8.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668197

ABSTRACT

This study explores the effects of growth temperature of InGaN/GaN quantum well (QW) layers on indium migration, structural quality, and luminescence properties. It is found that within a specific range, the growth temperature can control the efficiency of In incorporation into QWs and strain energy accumulated in the QW structure, modulating the luminescence efficiency. Temperature-dependent photoluminescence (TDPL) measurements revealed a more pronounced localized state effect in QW samples grown at higher temperatures. Moreover, a too high annealing temperature will enhance indium migration, leading to an increased density of non-radiative recombination centers and a more pronounced quantum-confined Stark effect (QCSE), thereby reducing luminescence intensity. These findings highlight the critical role of thermal management in optimizing the performance of InGaN/GaN MQWs in LEDs and other photoelectronic devices.

9.
Adv Mater ; : e2312429, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655823

ABSTRACT

2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.

10.
J Colloid Interface Sci ; 667: 64-72, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615624

ABSTRACT

Na3V2(PO4)3 (NVP) has attracted considerable attention as a promising cathode material for sodium-ion batteries (SIBs). But its insufficient electronic conductivity, limited capacities, and fragile structure hinder its extended application, particularly in scenarios involving rapid charging and prolonged cycling. A hybrid cathode material has been developed to integrate both amorphous and crystalline phases, with the objective of improving the rate performance and Na storage capacity by leveraging bi-phase coordination. Consequently, the combination of amorphous and crystalline phases enhanced the kinetics of Na-ion diffusion, resulting in a 1-2 orders of magnitude enhancement in diffusion dynamics. Furthermore, the existence of amorphous states has been demonstrated to elevate the active Na2 site content, resulting in an increased reversible capacity. This assertion is substantiated by evidence derived from solid-state nuclear magnetic resonance (ss-NMR) and electrochemical characteristics. The innovative bi-phase collaborative material provides a specific capacity of 114 mAh/g at 0.2 C, exceptional rate performance of 82 mAh/g at 10 C, and remarkable long-term cycle stability, retaining 95 mAh/g at 5 C even after 300 cycles. In conclusion, the homogeneous hybridization of amorphous and crystalline phases presents itself as a promising and effective strategy for improving Na-ion storage capacity of cathodes in SIBs.

11.
J Geriatr Cardiol ; 21(1): 81-89, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38440336

ABSTRACT

BACKGROUND: The current understanding of the magnitude and consequences of multimorbidity in Chinese older adults with coronary heart disease (CHD) is insufficient. We aimed to assess the association and population-attributable fractions (PAFs) between multimorbidity and mortality among hospitalized older patients who were diagnosed with CHD in Shenzhen, China. METHODS: We conducted a retrospective cohort study of older Chinese patients (aged ≥ 65 years) who were diagnosed with CHD. Cox proportional hazards models were used to estimate the associations between multimorbidity and all-cause and cardiovascular disease (CVD) mortality. We also calculated the PAFs. RESULTS: The study comprised 76,455 older hospitalized patients who were diagnosed with CHD between January 1, 2016, and August 31, 2022. Among them, 70,217 (91.9%) had multimorbidity, defined as the presence of at least one of the predefined 14 chronic conditions. Those with cancer, hemorrhagic stroke and chronic liver disease had the worst overall death risk, with adjusted HRs (95% CIs) of 4.05 (3.77, 4.38), 2.22 (1.94, 2.53), and 1.85 (1.63, 2.11), respectively. For CVD mortality, the highest risk was observed for hemorrhagic stroke, ischemic stroke, and chronic kidney disease; the corresponding adjusted HRs (95% CIs) were 3.24 (2.77, 3.79), 1.91 (1.79, 2.04), and 1.81 (1.64, 1.99), respectively. All-cause mortality was mostly attributable to cancer, heart failure and ischemic stroke, with PAFs of 11.8, 10.2, and 9.1, respectively. As for CVD mortality, the leading PAFs were heart failure, ischemic stroke and diabetes; the corresponding PAFs were 18.0, 15.7, and 6.1, respectively. CONCLUSIONS: Multimorbidity was common and had a significant impact on mortality among older patients with CHD in Shenzhen, China. Cancer, heart failure, ischemic stroke and diabetes are the primary contributors to PAFs. Therefore, prioritizing improved treatment and management of these comorbidities is essential for the survival prognosis of CHD patients from a holistic public health perspective.

12.
Small Methods ; : e2301579, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433396

ABSTRACT

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are widely utilized in all-solid-state sodium metal batteries (ASSSMBs) due to their excellent flexibility and safety. However, poor ionic conductivity and mechanical strength limit its development. In this work, an emerging solvent-free hot-pressing method is used to prepare mechanically robust PEO-based SPE, while sodium superionic conductors Na3 Zr2 Si2 PO12 (NZSP) and NaClO4 are introduced to improve ionic conductivity. The as-prepared electrolyte exhibits a high ionic conductivity of 4.42 × 10-4 S cm-1 and a suitable electrochemical stability window (4.5 V vs Na/Na+ ). Furthermore, the SPE enables intimate contact with the electrode. The Na||Na3 V2 (PO4 )3 @C ASSSMB delivers a high-capacity retention of 97.1% after 100 cycles at 0.5 C and 60 °C, and exhibits excellent Coulombic efficiency (CE) (close to 100%). The ASSSMB with the 20 µm thick electrolyte also demonstrates excellent cyclic stability. This study provides a promising strategy for designing stable polymer-ceramic composite electrolyte membranes through hot-pressing to realize high-energy-density sodium metal batteries.

13.
Alzheimers Dement ; 20(4): 2843-2860, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445818

ABSTRACT

INTRODUCTION: Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS: We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION: These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.


Subject(s)
Alzheimer Disease , tau Proteins , Animals , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Dorsolateral Prefrontal Cortex , Macaca mulatta/metabolism , tau Proteins/cerebrospinal fluid
14.
Front Pharmacol ; 15: 1363259, 2024.
Article in English | MEDLINE | ID: mdl-38500771

ABSTRACT

Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was also utilized to investigate inter-ethnic and inter-patient differences in OSI pharmacokinetics (PK) and determine optimal dosing regimens. Methods: Population PBPK models of OSI for healthy and disease populations were developed using physicochemical and biochemical properties of OSI and physiological parameters of different groups. And then the PBPK models were validated using the multiple clinical PK and drug-drug interaction (DDI) study data. Results: The model demonstrated good consistency with the observed data, with most of prediction-to-observation ratios of 0.8-1.25 for AUC, Cmax, and Ctrough. The PBPK model revealed that plasma exposure of OSI was approximately 2-fold higher in patients compared to healthy individuals, and higher exposure observed in Caucasians compared to other ethnic groups. This was primarily attributed to a lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key factors influencing PK and EGFRm+ inhibition differences included genetic polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup), albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK variability was most influenced by CYP3A4 variants, fup, and albumin level. The PBPK simulations indicated that the optimal dosing regimen for patients across the three populations of European, Japanese, and Chinese ancestry was OSI 80 mg once daily (OD) to achieve the desired range of plasma Ctrough (328-677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary EGFRm+ inhibition (>80%). Conclusion: In conclusion, this study's PBPK simulations highlighted potential ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between Caucasian, Japanese, and Chinese populations, while also providing insights into optimal dosing regimens of OSI.

15.
Front Pharmacol ; 15: 1287262, 2024.
Article in English | MEDLINE | ID: mdl-38464724

ABSTRACT

Background: The CONSORT Extension for Chinese Herbal Medicine Formula 2017 (CONSORT-CHM Formula 2017) has established a reporting standard for randomized controlled trials (RCTs) of Chinese Herbal Medicine Formula (CHMF) interventions; however, its adherence and implications for the design and execution of study design remain ambiguous. It is necessary to evaluate the level of compliance with the CONSORT-CHM Formula 2017 in RCTs conducted over the past 5 years, and to determine the reporting quality of clinical trials in this field. Methods: First, a systematic search is conducted for RCTs on CHMF in EBM Reviews, Allied and Complementary Medicine (AMED), Embase, Ovid-MEDLINE(R), Wanfang data, China National Knowledge Infrastructure (CNKI), VIP Chinese Medical Journal Database (VIP) and Chinese Biomedical Literature (CBM) database, that encompassed CHMF interventional RCTs published from 1 January 2018 to 8 June 2022, with language restriction to English or Chinese. Second, a descriptive analysis will be performed regarding the study design and general characteristics of the included trials. Third, for the quality assessment, we have subdivided the CONSORT-CHM Formula 2017 checklist (consisting of 22 extended items) into a total of 42 sub-questions to facilitate scoring, with a specific focus on the description, quality control, and safety assessment of CHMF interventions. Professional training and a pilot test on 100 randomly selected articles will be provided for all reviewers. Throughout this process, a standard operating procedure (SOP) for quality assessment will be developed to ensure consistency. Each item will be assessed by two reviewers in a paired back-to-back manner, and the compliance rate will be calculated to assess inter-rater agreement. Discussion: This review will identify the current reporting characteristics and quality of CHMF interventional studies and further evaluate the impact of CONSORT-CHM Formula 2017. The results may provide suggestions for future application or promotion of the guideline. Registration: The study has been registered on Open Science Framework (https://osf.io/xpn7f).

16.
Phytomedicine ; 127: 155391, 2024 May.
Article in English | MEDLINE | ID: mdl-38452690

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Subject(s)
Bufanolides , Colorectal Neoplasms , Lung Neoplasms , Animals , Mice , Humans , NF-E2-Related Factor 2/metabolism , Colorectal Neoplasms/pathology , Cell Line, Tumor , Bufanolides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
17.
Opt Lett ; 49(5): 1305-1308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426999

ABSTRACT

Temperature characteristics of GaN-based laser diodes are investigated. It is noted that the characteristic temperature of the threshold current (T0) decreases with decreasing lasing wavelength for GaN-based LDs. The performance deteriorates seriously for UV LDs at high temperature. It is ascribed to the increase of carriers escaping from quantum wells due to the lower potential barrier height. In this Letter, AlGaN is used as the barrier layer in UV LDs instead of GaN to improve the temperature characteristic of the threshold current and slope efficiency by increasing the potential barrier height of quantum wells. Based on this structure, a high output power of 4.6 W is obtained at the injection current of 3.8 A; its lasing wavelength is 386.8 nm.

18.
Neurol Ther ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427273

ABSTRACT

OBJECTIVE: This study aimed to establish and validate a nomogram prognostic model for predicting short-term efficacy of acetylcholine receptor antibody-positive (AChR-Ab+) generalized myasthenia gravis (GMG). METHODS: A retrospective observational study was conducted at the First Hospital of Shanxi Medical University, enrolling patients diagnosed with AChR-Ab+ GMG from May 2020 to September 2022. The primary outcome was the change in the Myasthenia Gravis Foundation of America (MGFA) post-intervention status after 6 months of standard treatment. Predictive factors were identified through univariate and multivariate logistic regression analyses, with significant factors incorporated into the nomogram. The bootstrap test was used for internal validation of the nomogram model. Model performance was assessed using calibration curves, receiver-operating characteristic curve analysis, and decision curve analysis (DCA). RESULTS: A total of 90 patients were enrolled, of whom 30 achieved unchanged or worse status after 6 months of standard therapy. Univariate logistic regression analysis showed that quantitative myasthenia gravis score, gender, body mass index, course of disease, hemoglobin levels, and white blood cell counts were six potential predictors. These factors were used for multivariate logistic regression analysis, and a nomogram was constructed. The calibration curve showed that the predicted value was in good agreement with the actual value (p = 0.707), and the area under the curve value (0.792, 95% CI 0.686-0.899) indicated good discrimination ability. DCA suggests that this model has potential clinical application value. CONCLUSION: The constructed nomogram, based on key patient indicators, shows promise as a clinically useful tool for predicting the short-term efficacy of treatment of AChR-Ab+ GMG. Validation in larger, multicenter cohorts is needed to further substantiate its applicability.

19.
J Pathol ; 263(1): 47-60, 2024 05.
Article in English | MEDLINE | ID: mdl-38389501

ABSTRACT

Liver kinase B1 (Lkb1), encoded by serine/threonine kinase (Stk11), is a serine/threonine kinase and tumor suppressor that is strongly implicated in Peutz-Jeghers syndrome (PJS). Numerous studies have shown that mesenchymal-specific Lkb1 is sufficient for the development of PJS-like polyps in mice. However, the cellular origin and components of these Lkb1-associated polyps and underlying mechanisms remain elusive. In this study, we generated tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 and Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, performed single-cell RNA sequencing (scRNA-seq) and imaging-based lineage tracing, and aimed to investigate the cellular complexity of gastrointestinal polyps associated with PJS. We found that Lkb1flox/+;Myh11-Cre/ERT2 mice developed gastrointestinal polyps starting at 9 months after tamoxifen treatment. scRNA-seq revealed aberrant stem cell-like characteristics of epithelial cells from polyp tissues of Lkb1flox/+;Myh11-Cre/ERT2 mice. The Lkb1-associated polyps were further characterized by a branching smooth muscle core, abundant extracellular matrix deposition, and high immune cell infiltration. In addition, the Spp1-Cd44 or Spp1-Itga8/Itgb1 axes were identified as important interactions among epithelial, mesenchymal, and immune compartments in Lkb1-associated polyps. These characteristics of gastrointestinal polyps were also demonstrated in another mouse model, tamoxifen-inducible Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, which developed obvious gastrointestinal polyps as early as 2-3 months after tamoxifen treatment. Our findings further confirm the critical role of mesenchymal Lkb1/Stk11 in gastrointestinal polyposis and provide novel insight into the cellular complexity of Lkb1-associated polyp biology. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
AMP-Activated Protein Kinases , Peutz-Jeghers Syndrome , Animals , Mice , Peutz-Jeghers Syndrome/genetics , Peutz-Jeghers Syndrome/pathology , Protein Serine-Threonine Kinases/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Sequence Analysis, RNA , Serine , Tamoxifen/pharmacology
20.
Comput Assist Surg (Abingdon) ; 29(1): 2311940, 2024 12.
Article in English | MEDLINE | ID: mdl-38315080

ABSTRACT

OBJECTIVES: We aimed to prospectively investigate the benefit of using augmented reality (AR) for surgery residents learning aneurysm surgery. MATERIALS AND METHODS: Eight residents were included, and divided into an AR group and a control group (4 in each group). Both groups were asked to locate an aneurysm with a blue circle on the same screenshot after their viewing of surgery videos from both AR and non-AR tests. Only the AR group was allowed to inspect and manipulate an AR holographic representation of the aneurysm in AR tests. The actual location of the aneurysm was defined by a yellow circle by an attending physician after each test. Localization deviation was determined by the distance between the blue and yellow circle. RESULTS: Localization deviation was lower in the AR group than in the control group in the last 2 tests (AR Test 2: 2.7 ± 1.0 mm vs. 5.8 ± 4.1 mm, p = 0.01, non-AR Test 2: 2.1 ± 0.8 mm vs. 5.9 ± 5.8 mm, p < 0.001). The mean deviation was lower in non-AR Test 2 as compared to non-AR Test 1 in both groups (AR: p < 0.001, control: p = 0.391). The localization deviation of the AR group decreased from 8.1 ± 3.8 mm in Test 2 to 2.7 ± 1.0 mm in AR Test 2 (p < 0.001). CONCLUSION: AR technology provides an effective and interactive way for neurosurgery training, and shortens the learning curve for residents in aneurysm surgery.


Subject(s)
Aneurysm , Augmented Reality , Surgery, Computer-Assisted , Humans , Learning Curve , Surgery, Computer-Assisted/methods , Neurosurgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...