Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763727

ABSTRACT

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Emulsions , Escherichia coli , Fruit , Mannans , alpha-Cyclodextrins , alpha-Cyclodextrins/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Mannans/chemistry , Mannans/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fruit/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Food Preservation/methods , Staphylococcus aureus/drug effects , Food Packaging/methods , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Drug Liberation
2.
Chem Soc Rev ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738520

ABSTRACT

High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.

3.
Oncol Rep ; 51(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38695244

ABSTRACT

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the Transwell cell migration and invasion assay data featured in Figs. 5C and 6C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published elsewhere prior to the submission of this paper to Oncology Reports, or were submitted for consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 37: 2743­2750, 2017; DOI: 10.3892/or.2017.5555].

4.
Article in English | MEDLINE | ID: mdl-38703096

ABSTRACT

CONTEXT: Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being. OBJECTIVE: This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China. METHODS: This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS: A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (ß: -1.373--0.016, pFDR: <0.001-0.031; ß: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (ß: 0.023-2.396, pFDR: <0.001; ß: 0.014-1.736, pFDR: <0.001-0.049). CONCLUSION: Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.

5.
Int J Biol Macromol ; 269(Pt 1): 132063, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705329

ABSTRACT

Probiotic therapy has emerged as a promising approach for the treatment of gastrointestinal diseases, offering advantages in terms of safety and convenience. However, oral probiotics encounter significant challenges, including exposure to a hostile gastric environment with low pH, bile salts, elevated levels of reactive oxygen species (ROS), and damage to the protective mucus layer. These factors reduce probiotic survival rates and limit their physiological activity. To address these challenges, we developed a layer-by-layer coated probiotics with curcumin-loaded liposome and polymer. Through DSS-induced colitis mice experiments, we demonstrated that the coated probiotics exhibited an improved survival rate in the gastrointestinal tract and enhanced adhesion to the intestinal mucosa. Furthermore, multi-layered coated probiotics exhibited remarkable efficacy in alleviating colitis by efficiently repairing the gut barrier, modulating gut microbial homeostasis, and reducing bacterial motility at sites of colonic inflammation. Our innovative approach holds promise for effectively treating gastrointestinal diseases.

7.
Int J Biol Macromol ; : 132376, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750865

ABSTRACT

Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.

8.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605043

ABSTRACT

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Subject(s)
Carbon Sequestration , Forests , Trees , China , Biomass , Carbon/analysis
9.
Am J Hum Genet ; 111(5): 954-965, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38614075

ABSTRACT

Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.


Subject(s)
Blood Pressure , Genome-Wide Association Study , Quantitative Trait Loci , Humans , Blood Pressure/genetics , Polymorphism, Single Nucleotide , Models, Genetic , Genotype , Genetic Variation , Computer Simulation , Phenotype
10.
Angew Chem Int Ed Engl ; : e202402453, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622832

ABSTRACT

Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 µm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.

11.
Article in English | MEDLINE | ID: mdl-38581929

ABSTRACT

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Subject(s)
Limit of Detection , Nandrolone , Cattle , Animals , Nandrolone/analysis , Nandrolone/urine , Linear Models , Reproducibility of Results , Mass Spectrometry/methods , Sewage/chemistry , Sewage/analysis , Animal Feed/analysis , Anabolic Agents/urine , Anabolic Agents/analysis
12.
Behav Sci (Basel) ; 14(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38540547

ABSTRACT

Attentional bias towards threatening information is a crucial factor contributing to the development and persistence of social anxiety. However, the attentional bias towards threat information and the preferential processing pattern of emotional cues in individuals with social anxiety disorder during integrated facial and physical stimuli processing remain unclear. In this study, we employed a dot-probe paradigm to investigate the attentional bias towards integrated emotions (facial-body) among students with high and low levels of social anxiety (Experiment 1). Experiments 2 and 3 examined the attentional bias of socially anxious individuals when faced with conflicting emotional cues from faces or bodies in relation to integrated emotions. The data revealed that participants both high and low levels of social anxiety participants exhibited accelerated orienting and biased attention towards facial-body emotional processing. When there was inconsistency between emotional cues from faces or bodies and integrated emotions, higher levels of social anxiety were associated with increased vigilance towards threatening faces or bodies. These findings underscore that individuals with social anxiety possess an ability to rapidly capture threatening cues during the processing of facial-body emotional stimuli while also demonstrating a tendency to avoid relying solely on facial cues by compensating through bodily cues for emotion perception.

13.
J Adv Res ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471648

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with an increasing incidence worldwide. Single drug therapy may have toxic side effects and disrupt gut microbiota balance. Polyphenols are widely used in disease intervention due to their distinctive nutritional properties and medicinal value, which a potential gut microbiota modulator. However, there is a lack of comprehensive review to explore the efficacy and mechanism of combined therapy with drugs and polyphenols for NAFLD. AIM OF REVIEW: Based on this, this review firstly discusses the link between NAFLD and gut microbiota, and outlines the effects of polyphenols and drugs on gut microbiota. Secondly, it examined recent advances in the treatment and intervention of NAFLD with drugs and polyphenols and the therapeutic effect of the combination of the two. Finally, we highlight the underlying mechanisms of polyphenol combined drug therapy in NAFLD. This is mainly in terms of signaling pathways (NF-κB, AMPK, Nrf2, JAK/STAT, PPAR, SREBP-1c, PI3K/Akt and TLR) and gut microbiota. Furthermore, some emerging mechanisms such as microRNA potential biomarker therapies may provide therapeutic avenues for NAFLD. KEY SCIENTIFIC CONCEPTS OF REVIEW: Drawing inspiration from combination drug strategies, the use of active substances in combination with drugs for NAFLD intervention holds transformative and prospective potential, both improve NAFLD and restore gut microbiota balance while reducing the required drug dosage. This review systematically discusses the bidirectional interactions between gut microbiota and NAFLD, and summarizes the potential mechanisms of polyphenol synergistic drugs in the treatment of NAFLD by modulating signaling pathways and gut microbiota. Future researches should develop multi-omics technology to identify patients who benefit from polyphenols combination drugs and devising individualized treatment plans to enhance its therapeutic effect.

14.
J Am Chem Soc ; 146(11): 7118-7123, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38437170

ABSTRACT

High-entropy oxides (HEOs) with an ultrathin geometric structure are especially expected to exhibit extraordinary performance in different fields. The phase structure is deemed as a key factor in determining the properties of HEOs, rendering their phase control synthesis tempting. However, the disparity in intrinsic phase structures and physicochemical properties of multiple components makes it challenging to form single-phase HEOs with the target phase. Herein, we proposed a self-lattice framework-guided strategy to realize the synthesis of ultrathin HEOs with desired phase structures, including rock-salt, spinel, perovskite, and fluorite phases. The participation of the Ga assistor was conducive to the formation of the high-entropy mixing state by decreasing the formation energy. The as-prepared ultrathin spinel HEOs were demonstrated to be an excellent catalyst with high activity and stability for the oxygen evolution reaction in water electrolysis. Our work injects new vitality into the synthesis of HEOs for advanced applications and undoubtedly expedites their phase engineering.

15.
Food Res Int ; 179: 114036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342549

ABSTRACT

Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.


Subject(s)
Drugs, Chinese Herbal , Polyphenols , Tandem Mass Spectrometry , Polyphenols/analysis , Fermentation , Chromatography, Liquid , Phenols/metabolism , Digestion , Rutin/metabolism , Colon/metabolism
16.
Nat Prod Res ; : 1-6, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38333912

ABSTRACT

A chemical investigation of leaves of Viburnum chingii afforded eleven compounds, including one undescribed lignan (1), a pair of known phenylpropanoid enantiomers (2a/2b), and eight known lignans (3-10). Their structures were elucidated by detailed spectroscopic and comparative literature data analysis. The absolute configurations of compounds 1 was determined by comparing the experimental ECD data with the calculated values. The compounds 2a/2b were separated successfully by a chiral chromatographic column. In addition, the acetylcholinesterase (AChE) inhibitory activities of described compounds were evaluated.

17.
J Agric Food Chem ; 72(2): 1391-1404, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38177996

ABSTRACT

Temperature fluctuations occurring during the cold chain logistics of salmon contribute to lipid oxidation. This study aimed to simulate cold chain interruption through freeze-thaw operations and evaluate the lipidomics data from salmon samples subjected to different numbers of freeze-thaw cycles by using rapid evaporative ionization mass spectrometry (REIMS) combined with an intelligent surgical knife (iKnife). The results indicated significant differences in the relative abundance of characteristic ions among the samples (p < 0.05). A total of 34 ions with variable importance for the projection values ≥1 were identified as potential biomarkers, including m/z 719.4233 ([PCC36:5-NH(CH3)3]-), m/z 337.3134 ([FAC22:1]-), m/z 720.4666 ([PEC35:6-H]-), m/z 309.2780 ([FAC20:1]-), m/z 777.4985 ([PCC40:4-NH(CH3)3]-), m/z 745.4421 ([PCC38:6-NH(CH3)3]-/[PEC38:6-NH3]-), m/z 747.4665 ([PCC38:5-NH(CH3)3]-/[PEC38:5-NH3]-), etc. The degree of lipid oxidation was found to be associated with the number of freeze-thaw cycles, exhibiting the most significant alterations in the relative abundance of lipid ions in the 8T samples. Additionally, sensory evaluation by the CIE-L*a*b* method and volatile analysis by headspace solid-phase microextraction gas chromatography-mass spectrometry demonstrated significant differences (p < 0.05) in color and odor among the salmon samples, with a correlation to the number of freeze-thaw cycles. The primary compounds responsible for alterations in salmon odor were aldehydes with lower odor thresholds. In summary, the iKnife-REIMS method accurately differentiated salmon muscle tissues based on varying levels of lipid oxidation, thus expanding the application of REIMS.


Subject(s)
Refrigeration , Salmon , Animals , Mass Spectrometry/methods , Lipids , Ions , Solid Phase Microextraction
18.
Anal Chem ; 96(5): 2152-2157, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38279912

ABSTRACT

Sensing materials innovation plays a crucial role in the development of high-performance film-based fluorescent sensors (FFSs). In our current study, we present the innovative fabrication of four fluorescent nanofilms via interfacially confined dynamic reaction of a specially designed fluorescent building block, a new boron-coordinated compound (NI-CHO), with a chosen one, benzene-1,3,5-tricarbohydrazide (BTH). The nanofilms as prepared are robust, uniform, flexible, and thickness tunable, at least from 40 to 1500 nm. The fabricated FFSs based on Film 3, one of the four nanofilms, shows highly selective and fully reversible response to NH3 vapor with an experimental detection limit of <0.1 ppm and a response time of 0.2 s. The unprecedented high performance of the nanofilm is ascribed to the specific quenching of its fluorescence emission owing to formation of an excited-state complex between the sensing unit and the analyte molecule. Efficient mass transfer also contributes to the high performance owing to the porous adlayer structure of the nanofilm. This work provides an example to show how to develop a high-performance sensing film via controlling the film's structure, especially the thickness.

19.
Foods ; 12(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959089

ABSTRACT

The acid tolerance of lactic acid bacteria is crucial for their fermentation and probiotic functions. Acid adaption significantly enhances the acid tolerance of strains, and the phenotypic heterogeneity driven by the acid tolerance response (ATR) contributes to this process by providing a selective advantage in harsh environments. The mechanism of heterogeneity under the ATR is not yet clear, but individual gene expression differences are recognized as the cause. In this study, we observed four heterogeneous subpopulations (viable, injured, dead, and unstained) of Lacticaseibacillus paracasei L9 (L9) induced by acid adaption (pH 5.0, 40 min) using flow cytometry. The viable subpopulation represented a significantly superior acid tolerance to the injured subpopulation or total population. Different subpopulations were sorted and transcriptomic analysis was performed. Five genes were found to be upregulated in the viable subpopulation and downregulated in the injured subpopulation, and bglG (LPL9_RS14735) was identified as having a key role in this process. Using salicin (glucoside)-inducing gene expression and gene insertion mutagenesis, we verified that bglG regulated the heterogeneity of the acid stress response and that the relevant mechanisms might be related to activating hsp20. This study provides new evidence for the mechanism of the ATR and may contribute to the theoretical basis of improving the acid tolerance of Lacticaseibacillus paracasei L9.

20.
Nature ; 624(7990): 92-101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957399

ABSTRACT

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Subject(s)
Carbon Sequestration , Carbon , Conservation of Natural Resources , Forests , Biodiversity , Carbon/analysis , Carbon/metabolism , Conservation of Natural Resources/statistics & numerical data , Conservation of Natural Resources/trends , Human Activities , Environmental Restoration and Remediation/trends , Sustainable Development/trends , Global Warming/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...