Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38048569

ABSTRACT

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are favorable for all-solid-state lithium metal batteries (ASSLBs) to ensure safety and enhance energy density. However, their narrow work windows and unstable electrode/electrolyte interfaces hinder their practical application in high-voltage ASSLBs. Although introducing additives in SPEs has been proven to be effective to address the above issues, it could hardly optimize both cathode and anode interfaces by an individual additive. Herein, heterogeneously double-layer SPEs are constructed with two typical additives (LiPO2F2 and LiFSI), which are used to modify the LiNi0.6Co0.2Mn0.2O2 (NCM)-cathode/electrolyte interface (CEI) and lithium-anode/solid electrolyte interface (SEI), and further understand their respective mechanism in enhancing the capacity and cycling stability of ASSLBs. Specifically, LiPO2F2 not only leads to a uniform CEI layer to prevent the oxidation decomposition of PEO and LiTFSI but also ensures fast Li+ diffusion at high voltage (>3.9 V), improving the rate performances and life spans of the cells. The LiFSI contributes to a stable SEI layer with rich LiF, suppressing the growth of lithium dendrites and maximizing the specific capacity for ASSLBs. Integrating the advantages of the two functional molecules, the optimized ASSLB displays an excellent capacity of 141.4 mAh g-1 at 1C and an outstanding capacity retention of 81.6% after 400 cycles when using the NCM cathode, even reaching 154.2 mAh g-1 at 0.1 mA cm-2 with a high mass loading (6.4 mg cm-2). Additionally, the bilayer SPEs also match well with a LiFePO4 electrode with a high mass loading of 11.0 mg cm-2, displaying a high capacity of 155.7 mAh g-1 at 0.1 mA cm-2.

2.
J Agric Food Chem ; 71(46): 17924-17946, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37940610

ABSTRACT

Astragalosides (AGs), as one of the main active ingredients in Astragali Radix (AR), have a series of biological activities. Previous studies have only qualitatively identified the metabolites of AGs in AR, resulting in a lack of quantification. In the present study, the original material was selected from 12 origins based on the levels of 4 AGs by high-performance liquid chromatography (HPLC). The prototype components and metabolites of total AGs (TAGs) in feces, urine, and plasma samples of rats were thoroughly screened and characterized by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The fermentation reaction and metabolites were verified by human fecal TAG fermentation in vitro. The metabolites of AG I, II, and IV transformed by human feces at different times were identified using UHPLC-HRMS, and the partial metabolites were quantified by HPLC. Furthermore, the anti-inflammatory and antioxidant activities of the metabolites were evaluated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells in vitro. In total, 13 AGs and 170 metabolites were identified in TAGs as well as in the plasma, urine, and feces of Sprague-Dawley (SD) rats by UHPLC-HRMS, including 28, 36, and 170 metabolites in the plasma, urine, and feces, respectively. The metabolites included the products of deglycosylation, demethylation, hydroxylation, glucuronidation, sulfation, and cysteine-binding reactions. Moreover, the TAG fermentation results in vitro showed great similarity. The human fecal incubation experiments for AG I, II, and IV demonstrated that the metabolic reaction of TAGs mainly occurred in intestinal feces and that deglycosylation, demethylation, and hydroxylation were the main pathways of their metabolism. HPLC quantitative analysis of the transformation solution at different time points showed that AGs were transformed into secondary glycosides [cycloastragenol-6-glucoside (CAG-6-glucoside)] and aglycones [cycloastragenol (CAG)] through a deglycosylation reaction. Analysis of the pharmacological activity showed that the anti-inflammatory and antioxidant activities of the metabolites were associated with the levels of the corresponding aglycones. Further, metabolic profiles of the TAGs were constructed. Overall, this study revealed the metabolic process of AGs in the intestine, providing guidance for the metabolism and pharmacological effects of other saponins.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Rats , Humans , Animals , Rats, Sprague-Dawley , Antioxidants/pharmacology , Antioxidants/metabolism , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Biotransformation , Glucosides , Anti-Inflammatory Agents
3.
Research (Wash D C) ; 6: 0193, 2023.
Article in English | MEDLINE | ID: mdl-37456930

ABSTRACT

With the progress of theoretical and applied technologies, the communication system based on the classical encryption is seriously threatened by quantum computing and distributed computing. A communication method that directly loads confidential information on the quantum state, quantum secure direct communication (QSDC), came into being for resisting security threats. Here, we report the first continuous-variable QSDC (CV-QSDC) experimental demonstration for verifying the feasibility and effectiveness of the CV-QSDC protocol based on Gaussian mapping and propose a parameter estimation for signal classification under the actual channels. In our experiment, we provided 4 × 102 blocks, where each block contains 105 data for direct information transmission. For the transmission distance of 5 km in our experiment, the excess noise is 0.0035 SNU, where SNU represents the unit of shot-noise units. The 4.08 × 105 bit per second experimental results firmly demonstrated the feasibility of CV-QSDC under the fiber channel. The proposed grading judgment method based on parameter estimation provides a practical and available message processing scheme for CV-QSDC in a practical fiber channel and lays the groundwork for the grading reconciliation.

4.
Arch Virol ; 167(12): 2845-2850, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36214899

ABSTRACT

Stagonosporopsis cucurbitacearum is an important plant-pathogenic fungus that causes stem and leaf blight diseases in a variety of crops. Here, we report the characterization of a novel victorivirus, tentatively named "Stagonosporopsis cucurbitacearum victorivirus 1" (ScVV-1), isolated from the S. cucurbitacearum isolate M-7. The ScVV-1 genome is 5,165 bp in length with a predicted GC content of 60.1% and contains two large open reading frames (ORF 1 and ORF2) encoding putative proteins that share significant sequence similarity with coat proteins (CPs) and RNA-dependent RNA polymerases (RdRps) of mycoviruses of the family Totiviridae. The ScVV-1 RdRp appears to be translated using a stop-initiation pentanucleotide UAAUG sequence. Phylogenetic analysis based on CP and RdRp amino acid (aa) sequences both indicated that ScVV-1 belongs to the genus Victorivirus in the family Totiviridae. To our knowledge, this is the first full-length genome sequence of a victorivirus infecting S. cucurbitacearum.


Subject(s)
Ascomycota , Fungal Viruses , Totiviridae , Nicotiana/genetics , Phylogeny , Totiviridae/genetics , Ascomycota/genetics , Fungal Viruses/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Double-Stranded
5.
Front Psychol ; 13: 870318, 2022.
Article in English | MEDLINE | ID: mdl-35936348

ABSTRACT

Creativity and innovation have significantly increased in the past years. Amabile and Pratt were the leading proponents of creativity who integrated a dynamic componential model of creativity and innovation in organizations. The present study discusses the concept of innovative behavior within the scientific and technological environment based on the dynamic componential model of creativity and innovation and the Triadic Reciprocal Determinism Theory. The study investigates the mediating effect of achievement motivation and the moderating effect of the organizational innovative climate between the meaning of work and innovative behavior. Meaning of work has a positive impact on innovative behavior based on the structural equation modeling and the results of data collected from the survey of 4,666 scientific and technological workers in China. In addition, achievement motivation plays a partial intermediary role between the meaning of work and innovative behavior. However, innovation within organizational climate plays a negative regulatory role between achievement motivation and innovative behavior. The study finds some existing weaknesses through the Importance-Performance Map Analysis. Lastly, we examine the critical findings and present hypothetical suggestions.

6.
Food Chem ; 368: 130723, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34500352

ABSTRACT

The effects of the fat crystal structure on lipid droplets digestion behaviors were investigated using an in vitro digestion model. The crystalline oil-in-water emulsions containing the same solid fat content (SFC) with different fat crystal sizes and polymorphic forms were fabricated by different storage protocols: constant-temperature and inconstant-temperature storage. Oral and gastric processing led to a significant increase (p < 0.05) in the d4,3 values of the two emulsions, and the two emulsions underwent partial coalescence and flocculation/aggregation. The free fatty acid (FFA) release profiles showed that the lipolysis extent decreased due to a larger crystal size. In addition, the two emulsions showed differences in beta polymorphism. This work further demonstrated that the FFA release could be modulated by the physical properties of the fat.


Subject(s)
Digestion , Gastrointestinal Tract , Emulsions , Particle Size , Water
7.
Front Immunol ; 12: 819029, 2021.
Article in English | MEDLINE | ID: mdl-35069603

ABSTRACT

Different morphologies have been detected in teleost macrophages. In this study, two macrophage cell lines were sub-cloned from a large yellow croaker head kidney cell line, LYCK. One type of sub-cloned cells was fusiform but the other was round, named LYC-FM and LYC-RM cells respectively, based on their morphologies. Both types showed the characteristics of macrophages, including expression of macrophage-specific marker genes, possession of phagocytic and bactericidal activities, and production of reactive oxygen species (ROS) and nitric oxide (NO). The transcription factor PU.1, crucial for the development of macrophages in mammals, was found to exist in two transcripts, PU.1a and PU.1b, in large yellow croaker, and constitutively expressed in LYC-FM and LYC-RM cells. The expression levels of PU.1a and PU.1b could be upregulated by recombinant large yellow croaker IFN-γ protein (rLcIFN-γ). Further studies showed that both PU.1a and PU.1b increased the expression of cathepsin S (CTSS) by binding to different E26-transformation-specific (Ets) motifs of the CTSS promoter. Additionally, we demonstrated that all three domains of PU.1a and PU.1b were essential for initiating CTSS expression by truncated mutation experiments. Our results therefore provide the first evidence that teleost PU.1 has a role in regulating the expression of CTSS.


Subject(s)
Cathepsins/genetics , Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Perciformes/physiology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Cell Line , Fish Diseases/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Phagocytosis , Promoter Regions, Genetic , Protein Binding , Reactive Oxygen Species/metabolism
8.
Chemphyschem ; 21(9): 908-915, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32150322

ABSTRACT

For all-polymer solar cells which are composed of polymer donors and polymer acceptors, the effect of alkyl side chains on photovoltaic performance is a matter of some debate, and this effect remains difficult to forecast. In this concise contribution, we demonstrate that three alkyls namely branched alkyl 2-butyloctyl (2BO), long linear alkyl n-dodecyl (C12), and double-short linear alkyl n-hexyls (DC6) incorporated into the side chains of large bandgap polymer donor PBDT-TTz can induce considerable, of significance, and different electronic, optical, and morphological parameters. Systematic studies shed light on the critical role of the double-short linear alkyl n-hexyls (DC6) in (i) producing large ionization potential value, (ii) increasing propensity of the polymer to order along the π-stacking direction, (iii) generating polymer crystallites with more preferential "face-on" orientation, consequently, (iv) improvement of carriers transportation, (v) suppression of charge recombination, (vi) reduction of energy loss in all-polymer devices. In parallel, we unearth that the PBDT-TTz with double-short linear alkyl n-hexyls (DC6) represents the highest efficiency of 8.3 %, whereas, the other two PBDT-TTz analogues (2BO, C12) yield efficiencies of less than 3 % in optimized all-polymer solar cells. Though branched or long linear alkyl side chains (2BO, C12) have been applied to provide the solution processability of conjugated polymers, motifs bearing multiple short linear alkyl substituents (DC6) are proved critical to the development of high performing polymers.

9.
Nanoscale Res Lett ; 9(1): 67, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24512541

ABSTRACT

We reported Ce and its oxide-modified TiO2 nanotube arrays (TNTs) and their semiconductor properties. The TNTs were prepared by anodic oxidation on pure Ti and investigated by electrochemical photocurrent response analysis. Then, the TNT electrodes were deposited of Ce by cathodic reduction of Ce(NO3)3 6H2O. After deposition, the TNT electrodes were fabricated by anodic oxidation at E = 1.0 V(SCE) for various electricity as Ce-Ce2O3-CeO2 modification. The Ce-deposited TNTs (band gap energy Eg = 2.92 eV) exhibited enhanced photocurrent responses under visible light region and indicated more negative flat band potential (Efb) compared with the TNTs without deposition. After anodic oxidation, the mixed Ce and its oxide (Ce2O3-CeO2)-modified TNT photoelectrodes exhibited higher photocurrent responses under both visible and UV light regions than the TNTs without deposition. The photocurrent responses and Efb were found to be strongly dependent on the contents of Ce2O3 and CeO2 deposited on TNTs. A new characteristic of Eg = 2.1 ± 0.1 eV was investigated in the Ce2O3- and CeO2-modified photoelectrodes. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were also employed to characterize various modified TNTs photoelectrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...