Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Front Microbiol ; 15: 1352989, 2024.
Article in English | MEDLINE | ID: mdl-38435693

ABSTRACT

Purpureocillium lavendulum is an important biocontrol agent against plant-parasitic nematodes, primarily infecting them with conidia. However, research on the regulatory genes and pathways involved in its conidiation is still limited. In this study, we employed Agrobacterium tumefaciens-mediated genetic transformation to generate 4,870 random T-DNA insertion mutants of P. lavendulum. Among these mutants, 131 strains exhibited abnormal conidiation, and further in-depth investigations were conducted on two strains (designated as #5-197 and #5-119) that showed significantly reduced conidiation. Through whole-genome re-sequencing and genome walking, we identified the T-DNA insertion sites in these strains and determined the corresponding genes affected by the insertions, namely Plhffp and Plpif1. Both genes were knocked out through homologous recombination, and phenotypic analysis revealed a significant difference in conidiation between the knockout strains and the wild-type strain (ku80). Upon complementation of the ΔPlpif1 strain with the corresponding wildtype allele, conidiation was restored to a level comparable to ku80, providing further evidence of the involvement of this gene in conidiation regulation in P. lavendulum. The knockout of Plhffp or Plpif1 reduced the antioxidant capacity of P. lavendulum, and the absence of Plhffp also resulted in decreased resistance to SDS, suggesting that this gene may be involved in the integrity of the cell wall. RT-qPCR showed that knockout of Plhffp or Plpif1 altered expression levels of several known genes associated with conidiation. Additionally, the analysis of nematode infection assays with Caenorhabditis elegans indicated that the knockout of Plhffp and Plpif1 indirectly reduced the pathogenicity of P. lavendulum towards the nematodes. The results demonstrate that Agrobacterium tumefaciens - mediated T-DNA insertion mutagenesis, gene knockout, and complementation can be highly effective for identifying functionally important genes in P. lavendulum.

2.
Environ Res ; 244: 117930, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38103771

ABSTRACT

Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.


Subject(s)
Hypocreales , Metals, Heavy , Tylenchoidea , Humans , Animals , Cadmium/analysis , Tylenchoidea/metabolism , Tylenchoidea/microbiology , Metals, Heavy/analysis , Hypocreales/metabolism , Soil
4.
Microbiol Spectr ; : e0127023, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37560934

ABSTRACT

Accurately recognizing pathogens by the host is vital for initiating appropriate immune response against infecting microorganisms. Caenorhabditis elegans has no known receptor to recognize pathogen-associated molecular pattern. However, recent studies showed that nematodes have a strong specificity for transcriptomes infected by different pathogens, indicating that they can identify different pathogenic microorganisms. However, the mechanism(s) for such specificity remains largely unknown. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum can infect the intestinal tract of the nematode C. elegans and the infection led to the accumulation of reactive oxygen species (ROS) in the infected intestinal tract, which suppressed fungal growth. Co-transcriptional analysis revealed that fungal genes related to anaerobic respiration and ethanol production were up-regulated during infection. Meanwhile, the ethanol dehydrogenase Sodh-1 in C. elegans was also up-regulated. Together, these results suggested that the infecting fungi encounter hypoxia stress in the nematode gut and that ethanol may play a role in the host-pathogen interaction. Ethanol production in vitro during fungal cultivation in hypoxia conditions was confirmed by gas chromatography-mass spectrometry. Direct treatment of C. elegans with ethanol elevated the sodh-1 expression and ROS accumulation while repressing a series of immunity genes that were also repressed during fungal infection. Mutation of sodh-1 in C. elegans blocked ROS accumulation and increased the nematode's susceptibility to fungal infection. Our study revealed a new recognition and antifungal mechanism in C. elegans. The novel mechanism of ethanol-mediated interaction between the fungus and nematode provides new insights into fungal pathogenesis and for developing alternative biocontrol of pathogenic nematodes by nematophagous fungi. IMPORTANCE Nematodes are among the most abundant animals on our planet. Many of them are parasites in animals and plants and cause human and animal health problems as well as agricultural losses. Studying the interaction of nematodes and their microbial pathogens is of great importance for the biocontrol of animal and plant parasitic nematodes. In this study, we found that the model nematode Caenorhabditis elegans can recognize its fungal pathogen, the nematophagous fungus Purpureocillium lavendulum, through fungal-produced ethanol. Then the nematode elevated the reactive oxygen species production in the gut to inhibit fungal growth in an ethanol dehydrogenase-dependent manner. With this mechanism, novel biocontrol strategies may be developed targeting the ethanol receptor or metabolic pathway of nematodes. Meanwhile, as a volatile organic compound, ethanol should be taken seriously as a vector molecule in the microbial-host interaction in nature.

5.
Exp Cell Res ; 430(1): 113712, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37414203

ABSTRACT

The impact of N6-methyladenosine (m6A) modification on pri-miRNA in sepsis-induced cardiomyopathy (SICM), and its underlying regulatory mechanism, have not been fully elucidated. We successfully constructed a SICM mice model through cecal ligation and puncture (CLP). In vitro, a lipopolysaccharide (LPS)-induced HL-1 cells model was also established. The results showed that sepsis frequently resulted in excessive inflammatory response concomitant with impaired myocardial function in mice exposed to CLP, as indicated by decreases in ejection fraction (EF), fraction shortening (FS), and left ventricular end diastolic diameters (LVDd). miR-193a was enriched in CLP mice heart and in LPS-treated HL-1 cells, while overexpression of miR-193a significantly increased the expression levels of cytokines. Sepsis-induced enrichment of miR-193a significantly inhibited cardiomyocytes proliferation and enhanced apoptosis, while this was reversed by miR-193a knockdown. Furthermore, under our experimental conditions, enrichment of miR-193a in SICM could be considered excessively maturated on pri-miR-193a by enhanced m6A modification. This modification was catalyzed by sepsis-induced overexpression of methyltransferase-like 3 (METTL3). Moreover, mature miRNA-193a bound to a predictive sequence within 3'UTRs of a downstream target, BCL2L2, which was further validated by the observation that the BCL2L2-3'UTR mutant failed to decrease luciferase activity when co-transfected with miRNA-193a. The interaction between miRNA-193a and BCL2L2 resulted in BCL2L2 downregulation, subsequently activating the caspase-3 apoptotic pathway. In conclusion, sepsis-induced miR-193a enrichment via m6A modification plays an essential regulatory role in cardiomyocyte apoptosis and inflammatory response in SICM. The detrimental axis of METTL3/m6A/miR-193a/BCL2L2 is implicated in the development of SICM.


Subject(s)
Cardiomyopathies , MicroRNAs , Sepsis , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Up-Regulation/genetics , Lipopolysaccharides/adverse effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/genetics , Sepsis/chemically induced , Methyltransferases/genetics , Methyltransferases/metabolism
6.
Mitochondrial DNA B Resour ; 8(4): 484-487, 2023.
Article in English | MEDLINE | ID: mdl-37063240

ABSTRACT

The complete mitochondrial genome of Drechslerella dactyloides was characterized in this study. This mitogenome is a closed circular molecule of 246860 bp in length with a GC content of 26.16%, including 87 predicted protein-coding genes, 29 transfer RNA genes, and two rRNA gens. Phylogenetic analyses based on concatenated amino acid sequences at 14 conserved mitochondrial protein-coding genes showed that D. dactyloides was closely related to Dactylellina haptotyla.

7.
Microbiome ; 11(1): 48, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36895023

ABSTRACT

BACKGROUND: Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS: The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS: Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.


Subject(s)
Microbiota , Nematoda , Nitrogen-Fixing Bacteria , Solanum lycopersicum , Animals , Plant Diseases/parasitology , Plants , Bacteria/genetics , Nitrogen , Plant Roots/microbiology
8.
J Fungi (Basel) ; 9(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36983493

ABSTRACT

Plant-parasitic nematodes cause severe economic losses to agriculture. As important biocontrol agents, nematophagous fungi evolved the ability to obtain nitrogen sources from nematodes. However, the impact of nitrogen sources on the growth and development of these fungi is largely unknown. In this study, we aimed to better understand how nitrogen sources could influence vegetative growth and conidiation through epigenetic regulation in the nematophagous fungus, Purpureocillium lavendulum. Through nutrition screening, we found a phenomenon of the fungus, limited colony extension with a large amount of conidia production when cultured on PDA media, can be altered by adding ammonia nitrate. Characterized by site-directed mutagenesis, the histone H3K14 acetylation was found to be involved in the alternation. Furthermore, the acetyltransferase PlGCN5 was responsible for H3K14 acetylation. Knockout of Plgcn5 severely diminished conidiation in P. lavendulum. Chip-seq showed that H3K14ac distributed in conidiation regulating genes, and genes in the MAPK pathway which may be the downstream targets in the regulation. These findings suggest that histone modification and nitrogen sources coordinated lifestyle regulation in P. lavendulum, providing new insight into the mechanism of growth regulation by nutritional signals for the carnivorous fungus.

9.
Article in English | MEDLINE | ID: mdl-36018780

ABSTRACT

A novel actinobacterium, designated KC 17012T, was isolated from lead zinc tailings collected from Lanping, Yunnan, PR China. Comparative 16S rRNA gene sequencing showed that KC 17012T belonged to the genus Streptomyces and was most closely related to the type strains of Streptomyces neyagawaensis (98.34%), Streptomyces panaciradicis (98.34%) and Streptomyces heilongjiangensis (98.27%). Phylogenetic tree analysis revealed strain KC 17012T formed a distinct clade. The genome size was 8.64 Mbp with a DNA G+C content of 70.8%. Digital DNA-DNA hybridization and average nucleotide identity values between the genome sequence of strain KC 17012T and those of S. neyagawaensis JCM 4796T (25.3 and 81.5 %) and S. panaciradicis NBRC 109811T (30.1 and 85.7 %) were below the thresholds of 70 and 96% for prokaryotic conspecific assignation. The strain formed long straight aerial hyphae which generated regular short rod spores with spiny surfaces. Growth occurred at 10-45 °C, pH 6-8 and with 0-9 % NaCl (w/v). Strain KC 17012T contained ll-diaminopimelic acid and the major whole-cell hydrolysates included glucose, mannose and ribose. The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified lipid and one unidentified phospholipid. On the basis of the results of a polyphasic taxonomic study, it is concluded that KC 17012T represents a novel species of the genus Streptomyces, for which the name Streptomyces plumbidurans sp. nov., is proposed. The type strain is KC 17012T (CGMCC 4.7704T=JCM 35204T).


Subject(s)
Actinobacteria , Streptomyces , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Lead , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2
10.
Antonie Van Leeuwenhoek ; 115(10): 1285-1295, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998006

ABSTRACT

An isolate of Gram-stain-negative and strictly aerobic bacterium, designated KC 17139T, was isolated from Jiaozi Mountain sample in Yunnan, China. Cells were non-motile cocci to oval, catalase-positive and oxidase-positive. Growth occurred at 0-7% NaCl (w/v; optimum, 0%), pH 6.0-8.0 (optimum, pH 7.0) and 15-45 °C (optimum, 28-37 °C). The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC) and four unidentified aminolipids (UALs). Strain KC 17139T contained summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c), C18:1 2OH and C16:0 as major cellular fatty acids (> 5%) and ubiquinone-10 as the sole isoprenoid quinone. The 16S rRNA gene sequence analysis indicated that strain KC 17139T shared highest similarities with Siccirubricoccus phaeus 1-3T (96.7%) and Siccirubricoccus deserti SYSU D8009T (95.0%). Strain KC 17139T clustered with the two Siccirubricoccus type strains, but formed a separate branch in both 16S rRNA gene and genome-scale phylogenetic dendrograms. The genomic DNA G + C content of strain KC 17139T was 71.2%. Genomic comparisons between strain KC 17139T and its close relatives showed the highest digital DNA-DNA hybridisation to S. phaeus (35.5%), highest average nucleotide identity to S. phaeus (88.2%), indicating that strain KC 17139T represents a novel species. On the basis of results of phenotypic, chemotaxonomic and molecular analysis, we report a new bacterium strain KC 17139T belonged to genus Siccirubricoccus, for which the name Siccirubricoccus soli sp. nov. is proposed. The type strain is KC 17139T (= CGMCC 1.18756T = JCM 35132T).


Subject(s)
Phosphatidylethanolamines , Ubiquinone , Bacterial Typing Techniques , Cardiolipins , Catalase , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleotides , Phosphatidylcholines , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride , Soil , Terpenes , Ubiquinone/chemistry
11.
J Am Heart Assoc ; 11(7): e023787, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35289183

ABSTRACT

Background Post-resuscitation syndrome, involves a severe inflammatory response following successful cardiopulmonary resuscitation. The potential mechanism of Vitamin C (VitC) after cardiopulmonary resuscitation on myocardial and cerebral function, duration of survival is undefined. Methods and Results A first set of experiments were done in 18 male Sprague-Dawley rats for the investigation of short-term follow-up, randomized into 3 groups: (1) sham; (2) controls; (3) VitC. Ventricular fibrillation was electrically induced and untreated for 6 minutes. Cardiopulmonary resuscitation including chest compression and mechanical ventilation were then initiated and continued for 8 minutes followed by defibrillation. At 5 minutes after return of spontaneous circulation, either VitC (200 mg/kg) or placebo was administered by intravenous infusion with a syringe pump for half an hour. There were significant improvements in myocardial function and buccal microcirculation in rats treated with VitC after return of spontaneous circulation 4 hours compared with controls. VitC inhibited proinflammatory cytokines (interleukin-6 and tumor necrosis factor-α), SDC-1 (Syndecan-1), and hyaluronic acid in plasma compared with controls (P<0.01). VitC decreased reactive oxygen species production and inhibited p38/MAPK (mitogen-activated protein kinase) pathway phosphorylation. A second set with 20 animals was used for assessing the neurological deficit score after return of spontaneous circulation 72 hours, randomized into 2 groups: 1) controls; 2) VitC. The survival rate and neurological deficit score after return of spontaneous circulation 72 hours were improved in VitC-treated animals compared with those of the control group. Conclusions VitC reduces the severity of post-resuscitation myocardial and cerebral dysfunction and improves the survival. The mechanisms may involve inhibiting transcription of inflammatory cytokines and oxidative stress, thus protecting the integrity of the vascular endothelium. Meanwhile VitC reduces shedding of SDC-1 and alters p38/MAPK phosphorylation and microcirculation.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Animals , Ascorbic Acid/pharmacology , Cardiopulmonary Resuscitation/methods , Disease Models, Animal , Male , Phosphorylation , Rats , Rats, Sprague-Dawley , Syndecan-1/therapeutic use , p38 Mitogen-Activated Protein Kinases
12.
Artif Life Robot ; 27(1): 64-69, 2022.
Article in English | MEDLINE | ID: mdl-35095337

ABSTRACT

In this study, we verified the effectiveness of Kampo medicine by evaluating the changes in the feature values of facial skin texture and microcirculation at two distinct tissue depths (subcutaneous 2 mm and 8 mm). A total of 80 patients who took the Kampo formula participated in this study, and the changes in the feature values of facial skin texture and microcirculation were measured before and after Kampo treatment. The treatment period lasted 6-18 months, according to the doctor's judgment. The total area of the sulci cutis and the average thickness of the sulci cutis significantly decreased (P < 0.05), and the pixels of the grayscale image increased after Kampo treatment (P < 0.05). Moreover, the blood flow velocity at 8 mm depth significantly increased after Kampo treatment (P < 0.05). In this study, we specifically noted changes in the skin texture and microcirculation after Kampo treatment.

13.
J Biol Chem ; 298(3): 101637, 2022 03.
Article in English | MEDLINE | ID: mdl-35085555

ABSTRACT

Adaptation to nutrient deprivation depends on the activation of metabolic programs to use reserves of energy. When outside a host plant, second-stage juveniles (J2) of the root-knot nematode (Meloidogyne spp.), an important group of pests responsible for severe losses in the production of crops (e.g., rice, wheat, and tomato), are unable to acquire food. Although lipid hydrolysis has been observed in J2 nematodes, its role in fitness and the underlying mechanisms remain unknown. Using RNA-seq analysis, here, we demonstrated that in the absence of host plants, the pathway for the biosynthesis of polyunsaturated fatty acids was upregulated, thereby increasing the production of arachidonic acid in middle-stage J2 Meloidogyne incognita worms. We also found that arachidonic acid upregulated the expression of the transcription factor hlh-30b, which in turn induced lysosomal biogenesis. Lysosomes promoted lipid hydrolysis via a lysosomal lipase, LIPL-1. Furthermore, our data demonstrated that blockage of lysosomal lipolysis reduced both lifespan and locomotion of J2 worms. Strikingly, disturbance of lysosomal lipolysis resulted in a decline in infectivity of these juveniles on tomato roots. Our findings not only reveal the molecular mechanism of lipolysis in J2 worms but also suggest potential novel strategies for the management of root-knot nematode pests.


Subject(s)
Solanum lycopersicum , Tylenchoidea , Animals , Arachidonic Acids/metabolism , Lipid Metabolism , Lipolysis , Solanum lycopersicum/parasitology , Lysosomes , Tylenchoidea/metabolism , Tylenchoidea/physiology
14.
Crit Care Med ; 50(2): e189-e198, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34637412

ABSTRACT

OBJECTIVES: To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN: Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING: University-affiliated research laboratory. SUBJECTS: Sprague-Dawley rats. INTERVENTIONS: Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS: Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS: Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.


Subject(s)
Heart Arrest/complications , Heart Failure/drug therapy , NAD/pharmacology , Nervous System Diseases/drug therapy , Resuscitation/standards , Animals , Disease Models, Animal , Heart Arrest/drug therapy , Heart Failure/prevention & control , NAD/therapeutic use , Nervous System Diseases/prevention & control , Rats , Rats, Sprague-Dawley/injuries , Rats, Sprague-Dawley/metabolism , Resuscitation/methods , Resuscitation/statistics & numerical data
15.
Shock ; 57(3): 344-350, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34618729

ABSTRACT

ABSTRACT: Blocking ferroptosis reduces ischemia-reperfusion injury in some pathological contexts. However, there is no evidence that ferroptosis contributes to post-resuscitation myocardial dysfunction (PRMD). Here, we evaluated the therapeutic performance of ferroptosis inhibitors (UAMC-3203 or/and Deferoxamine) on the PRMD in a rat model of cardiac arrest and surveyed the changes of essential ferroptosis markers in the myocardium. Remarkably, all treatments reduce the severity of cardiac dysfunction and microcirculation hypoperfusion after resuscitation compared with control. Consistently, we observe that the ferroptosis marker Glutathione peroxidase 4, 4-hydroxynonenal and non-heme iron altered (1 ±â€Š0.060 vs. 0.021 ±â€Š0.016, 1 ±â€Š0.145 vs. 3.338 ±â€Š0.221, 52.010 ±â€Š3.587 ug/g vs. 70.500 ±â€Š3.158 ug/g, all P < 0.05) in the myocardium after resuscitation. These changes were significantly suppressed by UAMC-3203 [(0.187 ±â€Š0.043, 2.848 ±â€Š0.169, all P < 0.05), (72.43 ±â€Š4.920 ug/g, P  > 0.05)], or Deferoxamine (0.203 ±â€Š0.025, 2.683 ±â€Š0.273, 55.95 ±â€Š2.497 ug/g, all P < 0.05). Briefly, UAMC-3203 or/and Deferoxamine improve post-resuscitation myocardial dysfunction and provide evidence of ferroptosis involvement, suggesting that ferroptosis inhibitors could potentially provide an innovative therapeutic approach for mitigating the myocardial damage caused by cardiopulmonary resuscitation.


Subject(s)
Cardiopulmonary Resuscitation/adverse effects , Deferoxamine/therapeutic use , Ferroptosis/drug effects , Heart Arrest/therapy , Myocardial Reperfusion Injury/prevention & control , Siderophores/therapeutic use , Animals , Cyclohexylamines/agonists , Disease Models, Animal , Male , Phenylenediamines/agonists , Rats , Rats, Sprague-Dawley
16.
J Thorac Dis ; 13(10): 5788-5798, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34795927

ABSTRACT

BACKGROUND: Current guidelines recommend a 50 mm or greater compression depth for manual chest compression in adults. However, whether this uniform compression depth is a suitable requirement for mechanical CPR remains to be determined. We hypothesized that a relatively shallow compression depth (30 mm) would have similar hemodynamic efficacy but fewer complications versus the standard compression depth (50 mm) during mechanical cardiopulmonary resuscitation (CPR) with the miniaturized chest compressor (MCC) in a porcine model. METHODS: In the current study, we used a total of 16 domestic male pigs (38±2 kg). All pigs were exposed to 7 min of ventricular fibrillation (VF) followed by 5 min of CPR. Then the animals were randomly assigned to the shallow (30 mm) group and the standard (50 mm) group. At the second min of CPR, every pig was given epinephrine (20 µg/kg) through the femoral vein and repeated every 3 min. First defibrillation was delivered with a single 120 J shock at 5 min of CPR. Hemodynamics, carotid blood flow (CBF), end-tidal carbon dioxide (ETCO2), coronary perfusion pressure (CPP), intrathoracic pressure (ITP) and arterial blood gas were measured. Rib fractures and lung injuries, as indicated by ground-glass opacification (GGO), as well as intense parenchymal opacification (IPO), were assessed and calculated by quantitative computed tomography (QCT) scan. RESULTS: We found no significant differences in CPP, CBF, or ETCO2 between the both groups throughout the CPR period. After administration of epinephrine, the CPP of all animals increased while ETCO2 and CBF decreased during CPR. A significantly lower intrathoracic positive pressure (ITPP) and systolic artery pressure (SAP) were measured in the shallow group at the first min of CPR. However, we didn't find remarkable differences in these values between the both groups for the next 4 min of CPR. All animals were successfully resuscitated. The shallow group had significantly lower IPO QCT scores compared with the standard group. We found no significant differences in GGO QCT scores after resuscitation between both groups. CONCLUSIONS: Relatively shallow compression depth has similar hemodynamic efficacy but fewer complications versus the standard compression depth.

17.
Front Pharmacol ; 12: 758080, 2021.
Article in English | MEDLINE | ID: mdl-34712142

ABSTRACT

Empagliflozin is a newly developed antidiabetic drug to reduce hyperglycaemia by highly selective inhibition of sodium-glucose co-transporter 2. Hyperglycaemia is commonly seen in patients after cardiac arrest (CA) and is associated with worse outcomes. In this study, we examined the effects of empagliflozin on cardiac function in rats with myocardial dysfunction after CA. Non-diabetic male Sprague-Dawley rats underwent ventricular fibrillation to induce CA, or sham surgery. Rats received 10 mg/kg of empagliflozin or vehicle at 10 min after return of spontaneous circulation by intraperitoneal injection. Cardiac function was assessed by echocardiography, histological analysis, molecular markers of myocardial injury, oxidative stress, mitochondrial ultrastructural integrity and metabolism. We found that empagliflozin did not influence heart rate and blood pressure, but left ventricular function and survival time were significantly higher in the empagliflozin treated group compared to the group treated with vehicle. Empagliflozin also reduced myocardial fibrosis, serum cardiac troponin I levels and myocardial oxidative stress after CA. Moreover, empagliflozin maintained the structural integrity of myocardial mitochondria and increased mitochondrial activity after CA. In addition, empagliflozin increased circulating and myocardial ketone levels as well as heart ß-hydroxy butyrate dehydrogenase 1 protein expression. Together, these metabolic changes were associated with an increase in cardiac energy metabolism. Therefore, empagliflozin favorably affected cardiac function in non-diabetic rats with acute myocardial dysfunction after CA, associated with reducing glucose levels and increasing ketone body oxidized metabolism. Our data suggest that empagliflozin might benefit patients with myocardial dysfunction after CA.

18.
J Environ Manage ; 299: 113544, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34467869

ABSTRACT

Microorganisms play an important role in nutrient cycling and ecosystem stability. This experiment studied the conservation management approaches [control without fertilizer (CK); fertilizer and different mulching based straw mulching (SM), plastic mulching (PM), ridge-furrow with plastic mulching (RFPFM), and green manure (GM)] effects on the soil microbial community structures in spring corn (Zea Mayis) dry land. The results showed that the bacterial phylum mainly included Proteobacteria (28.2%-36.8%), Acidobacteriota (9.1%-17.9%), Bacteroidota (5.6%-8.9%) and Actinobacteria (3.1-6.2%). The most richness fungal components were Ascomycota (35.2%-44.2%), Basidiomycota (3.3%-12%) and Mortierellomycota (3.4%-6.6%). Additionally, the highest Chao1 and abundance-based coverage estimator (ACE) indexes of bacteria (2931.9 and 2953.7) and fungi (1083.316 and 1100.650) were present in RFPFM that indicating the richest microbial abundance, the highest Shannon and Simpson indexes was exist in PM (9.332 and 0.996) for bacteria and RFPFM (6.753 and 0.974) for fungi. Therefore, this study reveals the conservation management of fertilizer addition and mulching management obviously promoted microbial diversity and altered the superior microbial distribution that provides a potential way for agricultural sustainable management approaches in production practice during circular economy.


Subject(s)
Microbiota , Soil , Bacteria , Fungi , Soil Microbiology
19.
Biomed Pharmacother ; 142: 111935, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34467895

ABSTRACT

The physiology and physiopathology process of mitochondrial function following cardiac arrest remains poorly understood. We aimed to assess mitochondrial respiratory function on the heart and brain homogenates from cardiac arrest rats. The expression level of SIRT1/PGC-1α pathway was measured by immunoblotting. 30 rats were assigned to the CA group and the sham group. Rats of CA were subjected to 6 min of untreated ventricular fibrillation (VF) followed by 8 min of cardiopulmonary resuscitation (CPR). Mitochondrial respiratory function was compromised following CA and I/R injury, as indicated by CIL (451.46 ± 71.48 vs. 909.91 ± 5.51 pmol/min*mg for the heart and 464.14 ± 8.22 vs. 570.53 ± 56.33 pmol/min*mg for the brain), CI (564.04 ± 64.34 vs. 2729.52 ± 347.39 pmol/min*mg for the heart and 726.07 ± 85.78 vs. 1762.82 ± 262.04 pmol/min*mg for the brain), RCR (1.88 ± 0.46 vs. 3.57 ± 0.38 for the heart and 2.05 ± 0.19 vs. 3.49 ± 0.19, for the brain) and OXPHOS coupling efficiency (0.45 ± 0.11 vs. 0.72 ± 0.03 for the heart and 0.52 ± 0.05 vs. 0.71 ± 0.01 for the brain). However, routine respiration was lower in the heart and comparable in the brain after CA. CIV did not change in the heart but was enhanced in the brain. Furthermore, both SIRT1 and PGC-1α were downregulated concurrently in the heart and brain. The mitochondrial respiratory function was compromised following CA and I/R injury, and the major affected respiratory state is complex I-linked respiration. Furthermore, the heart and the brain respond differently to the global I/R injury after CA in mitochondrial respiratory function. Inhibition of the SIRT1/PGC-1α pathway may be a major contributor to the impaired mitochondrial respiratory function.


Subject(s)
Brain/metabolism , Cardiopulmonary Resuscitation , Heart Arrest/metabolism , Heart Arrest/physiopathology , Mitochondria/metabolism , Myocardium/metabolism , Animals , Biological Oxygen Demand Analysis , Disease Models, Animal , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/antagonists & inhibitors , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Respiration , Signal Transduction , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Spirometry , Ventricular Fibrillation/metabolism
20.
Front Physiol ; 12: 689531, 2021.
Article in English | MEDLINE | ID: mdl-34194340

ABSTRACT

In this study, we aimed to explore the role of lncRNAs in post-resuscitation myocardial dysfunction in a rat model of CA-CPR. A rat model of CA-CPR was constructed using a VF method. Myocardial functions, including cardiac output (CO), ejection fraction (EF), and myocardial performance index (MPI), were evaluated at the baseline, and 1, 2, 3, 4, and 6 h after resuscitation. A high throughput sequencing method was used to screen the differentially expressed lncRNAs, miRNAs, and mRNAs, which were further analyzed with bioinformatics. In addition, relationships between the molecules involved in the PI3K/Akt signaling pathway were explored with ceRNA network. Compared with the sham group, EF was significantly reduced and MPI was increased at the five consecutive time points in the CA-CPR group. 68 lncRNAs were upregulated and 40 lncRNAs were downregulated in the CA-CPR group, while 30 miRNAs were downregulated and 19 miRNAs were upregulated. Moreover, mRNAs were also differentially expressed, with 676 upregulated and 588 downregulated. GO analysis suggested that genes associated with cell proliferation, cell death and programmed cell death were significantly enriched. KEGG analysis showed that the PI3K/Akt, MAPK and Ras signaling pathways were the three most-enriched pathways. Construction of a ceRNA regulatory network indicated that LOC102549506, LOC103689920, and LOC103690137 might play important roles in the regulation of the PI3K/Akt signaling pathway in the CA-CPR treated rat. Taken together, LncRNAs, including LOC102549506, LOC103689920 and LOC103690137, might participate in post-resuscitation myocardial dysfunction by functioning as ceRNAs and regulating the PI3K/Akt signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...