Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563585

ABSTRACT

Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells (GSCs) reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase (CKB), mediated by Zinc finger E-box binding homeobox 1 (ZEB1). PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment.

2.
Carbohydr Polym ; 334: 122039, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553236

ABSTRACT

Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.


Subject(s)
Alginates , Drug Delivery Systems , Microspheres , Alginates/chemistry , Bone Regeneration , Osteogenesis , Hydrogels/chemistry
3.
Nat Commun ; 15(1): 40, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167292

ABSTRACT

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Subject(s)
Glioma , Peptidylprolyl Isomerase , Humans , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Sumoylation , Isomerism , Phosphorylation , Glioma/genetics , Neoplastic Stem Cells/metabolism , Ubiquitin-Specific Proteases/metabolism
4.
Open Life Sci ; 18(1): 20220655, 2023.
Article in English | MEDLINE | ID: mdl-37941788

ABSTRACT

Klotho is a recently discovered protein that has positive effects on all systems of the body, for example, regulating calcium and phosphorus metabolism, protecting nerves, delaying aging and so on. Fibroblast growth factors (FGFs) are a group of polypeptides that function throughout the body by binding with cell surface FGF receptors (FGFRs). Endocrine FGFs require Klotho as a co-receptor for FGFRs. There is increasing evidence that Klotho participates in calcium and phosphorus regulation and metabolic regulation via the FGF-Klotho axis. Moreover, soluble Klotho can function as a separate hormone to regulate homeostasis on various ion channels and carrier channels on the cell surface. This review mainly explains the molecular basis of the membrane signaling mechanism of Klotho.

5.
Stem Cells Dev ; 32(23-24): 758-767, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823745

ABSTRACT

The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.


Subject(s)
Acinar Cells , Galanin , Animals , Mice , Angiotensinogen , Mammals , Salivary Glands , Single-Cell Gene Expression Analysis , Submandibular Gland
6.
Adv Healthc Mater ; 12(30): e2301733, 2023 12.
Article in English | MEDLINE | ID: mdl-37660274

ABSTRACT

Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+  conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.


Subject(s)
Peri-Implantitis , Humans , Peri-Implantitis/drug therapy , Peri-Implantitis/prevention & control , Minocycline , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases , Connective Tissue
7.
Eur J Clin Microbiol Infect Dis ; 42(10): 1183-1194, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37606868

ABSTRACT

PURPOSE: To predict prognosis in HIV-negative cryptococcal meningitis (CM) patients by developing and validating a machine learning (ML) model. METHODS: This study involved 523 HIV-negative CM patients diagnosed between January 1, 1998, and August 31, 2022, by neurologists from 3 tertiary Chinese centers. Prognosis was evaluated at 10 weeks after the initiation of antifungal therapy. RESULTS: The final prediction model for HIV-negative CM patients comprised 8 variables: Cerebrospinal fluid (CSF) cryptococcal count, CSF white blood cell (WBC), altered mental status, hearing impairment, CSF chloride levels, CSF opening pressure (OP), aspartate aminotransferase levels at admission, and decreased rate of CSF cryptococcal count within 2 weeks after admission. The areas under the curve (AUCs) in the internal, temporal, and external validation sets were 0.87 (95% CI 0.794-0.944), 0.92 (95% CI 0.795-1.000), and 0.86 (95% CI 0.744-0.975), respectively. An artificial intelligence (AI) model was trained to detect and count cryptococci, and the mean average precision (mAP) was 0.993. CONCLUSION: A ML model for predicting prognosis in HIV-negative CM patients was built and validated, and the model might provide a reference for personalized treatment of HIV-negative CM patients. The change in the CSF cryptococcal count in the early phase of HIV-negative CM treatment can reflect the prognosis of the disease. In addition, utilizing AI to detect and count CSF cryptococci in HIV-negative CM patients can eliminate the interference of human factors in detecting cryptococci in CSF samples and reduce the workload of the examiner.


Subject(s)
Cryptococcus , HIV Infections , Meningitis, Cryptococcal , Humans , Meningitis, Cryptococcal/diagnosis , Meningitis, Cryptococcal/drug therapy , Artificial Intelligence , Prognosis , Machine Learning , HIV Infections/complications , HIV Infections/drug therapy
8.
Front Psychol ; 14: 1132039, 2023.
Article in English | MEDLINE | ID: mdl-37251046

ABSTRACT

Plenty of studies have been conducted to reveal neurocognitive underpinnings of conceptual representation. Compared with that of concrete concepts, the neurocognitive correlates of abstract concepts remain elusive. The current study aimed to investigate the influence of conceptual concreteness on the reading acquisition and integration of novel words into semantic memory. We constructed two-sentence contexts in which two-character pseudowords were embedded as novel words. Participants read the contexts to infer the meaning of novel words which were either concrete or abstract, and then performed a lexical decision task and a cued-recall memory task. In lexical decision task, primed by the learned novel words, their corresponding concepts, thematically related or unrelated words as well as unlearned pseudowords were judged whether they were words or not. In memory task, participants were presented with the novel words and asked to write down their meaning. The contextual reading and memory test can demonstrate the modulation of conceptual concreteness on novel word learning and the lexical decision task can reveal whether concrete and abstract novel words are integrated into semantic memory similarly or not. During contextual reading, abstract novel words presented for the first time elicited a larger N400 than concrete ones. In memory task, the meaning of concrete novel words was recollected better than abstract novel words. These results indicate that abstract novel words are more difficult to acquire during contextual reading, and to retain afterwards. For lexical decision task behavioral and ERPs were graded, with the longest reaction time, the lowest accuracy and the largest N400s for the unrelated words, then the thematically related words and finally the corresponding concepts of the novel words, regardless of conceptual concreteness. The results suggest that both concrete and abstract novel words can be integrated into semantic memory via thematic relations. These findings are discussed in terms of differential representational framework which posits that concrete words connect with each other via semantic similarities, and abstract ones via thematic relations.

9.
Front Bioeng Biotechnol ; 10: 1036061, 2022.
Article in English | MEDLINE | ID: mdl-36324890

ABSTRACT

Apical periodontitis is a common clinical disease caused by bacteria; bacterial metabolites can cause an imbalance in bone homeostasis, bone mass reduction, and tooth loss. Bone resorption in apical periodontitis causes a concentration of stress in the tooth and periodontal tissues during occlusion, which aggravates the disease. Emerging evidence indicates that bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), may play an important role in tooth and dentoalveolar development. Herein, we investigated the role of BMP9 in the development of apical periodontitis and its effects on the biomechanics of dentoalveolar bone. Apical periodontitis models were established in five BMP9 knockout (KO) mice and five C57BL/6 WT (wild-type) mice. At baseline and 14, 28, and 42 days after modeling, in vivo micro-computed tomography analysis and three-dimensional (3D) reconstruction were performed to evaluate the apical lesion in each mouse, and confirm that the animal models were successfully established. Finite element analysis (FEA) was performed to study the stress and strain at the alveolar fossa of each mouse under the same vertical and lateral stress. FEA revealed that the stress and strain at the alveolar fossa of each mouse gradually concentrated on the tooth cervix. The stress and strain at the tooth cervix gradually increased with time but were decreased at day 42. Under the same lingual loading, the maximum differences of the stress and strain at the tooth root in KO mice were greater than those in WT mice. Thus, these findings demonstrate that BMP9 could affect the biomechanical response of the alveolar fossa at the tooth root in mice with apical periodontitis. Moreover, the effects of BMP9 on the biomechanical response of the alveolar bone may be site-dependent. Overall, this work contributes to an improved understanding of the pathogenesis of apical periodontitis and may inform the development of new treatment strategies for apical periodontitis.

10.
Cell Mol Biol Lett ; 27(1): 46, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690719

ABSTRACT

The submandibular gland (SMG) and the sublingual gland (SLG) are two of the three major salivary glands in mammals. In mice, they are adjacent to each other and open into the oral cavity, producing saliva to lubricate the mouth and aid in food digestion. Though salivary gland dysfunction accompanied with fibrosis and metabolic disturbance is common in clinic, in-depth mechanistic research is lacking. Currently, research on how to rescue salivary function is challenging, as it must resort to using terminally differentiated acinar cells or precursor acinar cells with unknown differentiation. In this study, we established reversely immortalized mouse primary SMG cells (iSMGCs) and SLG cells (iSLGCs) on the first postnatal day (P0). The iSMGCs and iSLGCs grew well, exhibited many salivary gland characteristics, and retained the metabolism-related genes derived from the original tissue as demonstrated using transcriptome sequencing (RNA-seq) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two cell lines, which overlapped with those of the SMG and SLG, were enriched in cysteine and methionine metabolism. Furthermore, we investigated the role of bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), on metabolic and fibrotic functions in the SMG and SLG. We demonstrated that iSMGCs and iSLGCs presented promising adipogenic and fibrotic responses upon BMP9/Gdf2 stimulation. Thus, our findings indicate that iSMGCs and iSLGCs faithfully reproduce characteristics of SMG and SLG cells and present a promising prospect for use in future study of salivary gland metabolism and fibrosis upon BMP9/Gdf2 stimulation.


Subject(s)
Growth Differentiation Factor 2 , Sublingual Gland , Animals , Cell Line , Fibrosis , Growth Differentiation Factor 2/metabolism , Mammals , Mice , Salivary Glands/metabolism , Sublingual Gland/metabolism
11.
Front Mol Biosci ; 9: 1095142, 2022.
Article in English | MEDLINE | ID: mdl-36601585

ABSTRACT

Stem cells with the capacity of self-renewal and differentiation play pivotal roles in normal tissues and malignant tumors. Whereas stem cells are supposed to be genetically identical to their non-stem cell counterparts, cell stemness is deliberately regulated by a dynamic network of molecular mechanisms. Reversible post-translational protein modifications (PTMs) are rapid and reversible non-genetic processes that regulate essentially all physiological and pathological process. Numerous studies have reported the involvement of post-translational protein modifications in the acquirement and maintenance of cell stemness. Recent studies underscore the importance of protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like modifiers (SUMO), as a critical post-translational protein modification in the stem cell populations in development and tumorigenesis. In this review, we summarize the functions of protein sumoylation in different kinds of normal and cancer stem cells. In addition, we describe the upstream regulators and the downstream effectors of protein sumoylation associated with cell stemness. We also introduce the translational studies aiming at sumoylation to target stem cells for disease treatment. Finally, we propose future directions for sumoylation studies in stem cells.

12.
J Biomed Mater Res B Appl Biomater ; 110(4): 755-767, 2022 04.
Article in English | MEDLINE | ID: mdl-34637601

ABSTRACT

Human-treated dentin matrix (hTDM) is a biomaterial scaffold, which can induce implant cells to differentiate into odontoblasts and then form neo-dentin. However, hTDM with long storage or prepared by high-speed handpiece would not to form neo-dentin. In this research, we developed two fresh hTDM with different grinding speeds, which were low-speed hTDM (LTDM) with maximum speed of 500 rpm and high-speed hTDM (HTDM) with a speed of 3,80,000 rpm. Here, we aim to understand whether there were induced regeneration capacity differences between LTDM and HTDM. Scanning electron microscope showed that DFCs grew well on both materials, but the morphology of DFCs and the extracellular matrix was different. Especially, the secreted extracellular matrixes on the inner surface of LTDM were regular morphology and ordered arrangement around the dentin tubules. The transcription-quantitative polymerase chain reaction (qRT-PCR), western blot and immunofluorescence assay showed that the dentin markers DSPP and DMP-1 were about 2× greater in DFCs induced by LTDM than by HTDM, and osteogenic marker BSP was about 2× greater in DFCs induced by HTDM than by LTDM. Histological examinations of the harvested grafts observed the formation of neo-tissue were different, and there were neo-dentin formed on the inner surface of LTDM and neo-cementum formed on the outer surface of HTDM. In summary, it found that the induction abilities of LTDM and HTDM are different, and the dentin matrix is directional. This study lays a necessary foundation for searching the key factors of dentin regeneration in future.


Subject(s)
Dentin , Extracellular Matrix , Cell Differentiation , Cells, Cultured , Humans , Odontoblasts , Regeneration
13.
In Vitro Cell Dev Biol Anim ; 57(6): 620-630, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34212339

ABSTRACT

Human dental follicle cells (HDFCs) are an ideal cell source of stem cells for dental tissue repair and regeneration and they have great potential for regenerative medicine applications. However, the conventional monolayer culture usually reduces cell proliferation and differentiation potential due to the continuous passage during in vitro expansion. In this study, primary HDFC spheroids were generated on 1% agarose, and the HDFCs spontaneously formed cell spheroids in the agarose-coated dishes. Compared with monolayer culture, the spheroid-derived HDFCs exhibited increased proliferative ability for later passage HDFCs as analysed by Cell Counting Kit-8 (CCK-8). The transcription-quantitative polymerase chain reaction (qRT-PCR), western blot and immunofluorescence assay showed that the expression of stemness marker genes Sox2, Oct4 and Nanog was increased significantly in the HDFC spheroids. Furthermore, we found that the odontogenic differentiation capability of HDFCs was significantly improved by spheroid culture in the agarose-coated dishes. On the other hand, the osteogenic differentiation capability was weakened compared with monolayer culture. Our results suggest that spheroid formation of HDFCs in agarose-coated dishes partially restores the proliferative ability of HDFCs at later passages, enhances their stemness and improves odontogenic differentiation capability in vitro. Therefore, spheroid formation of HDFCs has great therapeutic potential for stem cell clinical therapy.


Subject(s)
Cell Culture Techniques , Dental Sac/growth & development , Odontogenesis/drug effects , Spheroids, Cellular/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Dental Sac/cytology , Dental Sac/metabolism , Humans , Odontogenesis/genetics , Sepharose/pharmacology , Spheroids, Cellular/cytology , Stem Cells/drug effects
14.
Emerg Microbes Infect ; 10(1): 1272-1283, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34120578

ABSTRACT

Immune checkpoints play various important roles in tumour immunity, which usually contribute to T cells' exhaustion, leading to immunosuppression in the tumour microenvironment. However, the roles of immune checkpoints in infectious diseases, especially fungal infection, remain elusive. Here, we reanalyzed a recent published single-cell RNA-sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) stimulated with Candida albicans (C. albicans), to explore the expression patterns of immune checkpoints after C. albicans bloodstream infection. We characterized the heterogeneous pathway activities among different immune cell subpopulations after C. albicans infection. The CTLA-4 pathway was up-regulated in stimulated CD4+ and CD8+ T cells, while the PD-1 pathway showed high activity in stimulated plasmacytoid dendritic cell (pDC) and monocytes. Importantly, we found that immunosuppressive checkpoints HAVCR2 and LAG3 were only expressed in stimulated NK and CD8+ T cells, respectively. Their viabilities were validated by flow cytometry. We also identified three overexpressed genes (ISG20, LY6E, ISG15) across all stimulated cells. Also, two monocyte-specific overexpressed genes (SNX10, IDO1) were screened out in this study. Together, these results supplemented the landscape of immune checkpoints in fungal infection, which may serve as potential therapeutic targets for C. albicans infection. Moreover, the genes with the most relevant for C. albicans infection were identified in this study.


Subject(s)
Candida albicans/immunology , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Leukocytes, Mononuclear/immunology , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Surface/genetics , Antigens, Surface/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Candida albicans/physiology , Candidiasis/immunology , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Exoribonucleases/genetics , Exoribonucleases/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , Sorting Nexins/genetics , Sorting Nexins/metabolism , Transcriptome , Ubiquitins/genetics , Ubiquitins/metabolism , Lymphocyte Activation Gene 3 Protein
15.
J Cell Mol Med ; 25(5): 2666-2678, 2021 03.
Article in English | MEDLINE | ID: mdl-33605035

ABSTRACT

Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/ß-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down ß-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down ß-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.


Subject(s)
Growth Differentiation Factor 2/genetics , Mesenchymal Stem Cells/metabolism , Odontogenesis/genetics , Osteogenesis/genetics , Tooth Germ/cytology , Wnt Signaling Pathway , Animals , Cell Differentiation , Cell Line , Cell Transformation, Neoplastic , Disease Models, Animal , Gene Knockdown Techniques , Growth Differentiation Factor 2/metabolism , Heterografts , Humans , Mesenchymal Stem Cells/cytology , Mice
16.
Mol Ther Oncolytics ; 20: 105-118, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33575475

ABSTRACT

CD8+ T cells are crucial to establish antitumor immunity, and their high infiltration associates with favorable prognoses. However, several CD8+ T cell subpopulations in the tumor microenvironment may play different roles in prognosis, progression, and immunotherapy. Here, we analyzed prior published single-cell RNA-sequencing (scRNA-seq) melanoma data to explore the heterogeneity of CD8+ T cell subpopulations and identified 7 major subpopulations. We found that high infiltration of exhausted CD8+ T cell subpopulation 2 would contribute to unfavorable prognoses. In contrast, a large proportion of naive/memory cells and cytotoxic CD8+ T cell subpopulation 3 would lead to favorable prognoses. Notably, the proportion of the cytotoxic CD8+ T cell subpopulation 3 would decrease in later-stage melanoma samples, while that of the exhausted CD8+ T cell subpopulation 2 would increase. We also found that high abnormal activities of metabolic pathways existed in exhausted CD8+ T cell subpopulation 1. Significantly, immunosuppressive checkpoints PD-1 and CTLA-4 signaling pathways were upregulated in exhausted CD8+ T cell subpopulations. In addition, a dynamic transcript landscape of immune checkpoints among different subpopulations was also depicted in this study. Moreover, we identified three overexpressed genes (PMEL, TYRP1, and EDNRB) that were significantly correlated to poor prognoses and only expressed in exhausted CD8+ T cell subpopulation 2. Importantly, they showed the highest expression in melanoma samples compared to other tumors. In general, we characterized the CD8+ T cell subpopulations in melanoma and identified that not only genes of immunosuppressive checkpoints but also PMEL, TYRP1, and EDNRB could serve as potential targets for melanoma therapy.

17.
Am J Transl Res ; 12(10): 6665-6681, 2020.
Article in English | MEDLINE | ID: mdl-33194063

ABSTRACT

L-type amino acid transporter 1 (LAT1) is a neutral amino acid transporter expressed in trophoblast giant cells onembryonic day 8 in mice. LAT1 is responsible for metabolism in blastocysts and cancer cells. Despite research concerning the aberrant high expression and indispensable function of LAT1 in various cancers, little is known about the role of LAT1 in regulating the behaviors of human trophoblast cells under different physiological and pathological conditions. The HTR8-SVneo human trophoblast cell line and JEG-3 and JAR choriocarcinoma cell lines are used as models for trophoblast cell biological research. The proliferation and apoptosis of these cells were assayed using the CCK-8 assay and flow cytometry, respectively. Transwell-chambers were used to observed migration and invasion of the cells. Immunofluorescent staining, western blot, and RT-PCR assays were used to determine the possible mechanism of LAT1 on human trophoblast cell behaviors with small interfering RNA or signal agonists and antagonist treatments. LAT1 was expressed in the trophoblast and choriocarcinoma cells. LAT1 was involved in regulating behaviors of these cells, such as cell proliferation, apoptosis, migration, and invasion. Detailed results suggested that LAT1 modulated trophoblast cell functions by mediation of mTORC1 signaling pathways. Our results implicate LAT1 as a very important regulator in human trophoblast cell behaviors at the maternal-fetal interface.

18.
Oncogene ; 39(13): 2707-2723, 2020 03.
Article in English | MEDLINE | ID: mdl-32005973

ABSTRACT

Mitochondrial fusion and fission dynamics fine-tune cellular calcium homeostasis, ATP production capacity and ROS production and play important roles in cell proliferation and migration. Dysregulated mitochondrial dynamics is closely related to tumor development, but the mechanism of mitochondrial dynamics dysregulation and its role in the development of lung cancer remains unclear. Here, we demonstrate that the DNA sensor protein absent in melanoma 2 (AIM2) is highly expressed in non-small cell lung cancer (NSCLC) cells and that high AIM2 expression is associated with poor prognosis in patients with NSCLC. High expression of AIM2 contributes to tumor cell growth and proliferation independent of inflammasome activation in vitro and in vivo. Further studies have shown that AIM2 colocalizes with mitochondria in NSCLC cells and that AIM2 knockdown leads to enhanced mitochondrial fusion and decreased cell proliferation. Mechanistic studies have shown that AIM2 downregulation promotes MFN2 upregulation, thereby enhancing mitochondrial fusion. Moreover, we found that mitochondrial fusion driven by AIM2 knockdown leads to a decrease of cellular reactive oxygen species (ROS) production, which further causes inactivation of the MAPK/ERK signaling pathway. Together, we discovered a novel function of AIM2 in promoting NSCLC development by regulating mitochondrial dynamics and revealed its underlying mechanism. Our work provides new intervention targets for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA-Binding Proteins/metabolism , Lung Neoplasms/genetics , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Animals , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/genetics , Datasets as Topic , Female , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , MAP Kinase Signaling System/genetics , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Prognosis , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
19.
Adv Healthc Mater ; 9(5): e1901469, 2020 03.
Article in English | MEDLINE | ID: mdl-31994326

ABSTRACT

Bone healing is a dynamic process regulated by biochemical signals such as chemokines and growth factors, and biophysical signals such as topographical and mechanical features of extracellular matrix or mechanical stimuli. Hereby, a mechanically tough and bioactive hydrogel based on autologous injectable platelet-rich fibrin (iPRF) modified with gelatin nanoparticles (GNPs) is developed. This composite hydrogel demonstrates a double network (DN) mechanism, wherein covalent network of fibrin serves to maintain material integrity, and self-assembled colloidal network of GNPs dissipates force upon loading. A rabbit sinus augmentation model is used to investigate the bioactivity and osteogenesis capacity of the DN hydrogels. The DN hydrogels adapt to the local environmental complexity of bone defects, i.e., accommodate the irregular shape of the defects and withstand the pressure formed in the maxillary sinus during animal's respiration process. The DN hydrogel is also demonstrated to absorb and prolong the release of the bioactive growth factors stemming from iPRF, which could have contributed to the early angiogenesis and osteogenesis observed inside the sinus. This adaptable and bioactive DN hydrogel can achieve enhanced bone regeneration in treating complex bone defects by maintaining long-term bone mass and withstanding the functional mechanical stimuli.


Subject(s)
Nanoparticles , Platelet-Rich Fibrin , Animals , Gelatin , Hydrogels/pharmacology , Osteogenesis , Rabbits
20.
Mycoses ; 63(1): 21-29, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31610041

ABSTRACT

BACKGROUND: Despite the worldwide prevalence of dermatophyte infections, only a few genes are reported to be related to dermatophyte infections. In addition, the mechanism by which different ecological dermatophytes infection leads to varying intensity of inflammation remains unclear. OBJECTIVES: To investigate the mechanism of varying intensity of skin inflammation caused by different ecological dermatophytes infection. METHODS: We infected HaCaT cells with anthropophilic and geophilic dermatophytes to mimic various ecological dermatophyte infections. RNA-sequencing (RNA-seq) was employed to identify the change in the gene expression of HaCaT cells. To verify the expression of differentially expressed genes (DEGs), we selected 18 HaCaT cells genes to conduct qPCR experiments. In addition, immunoblotting was conducted to validate key genes from the MAPK signalling pathway. RESULTS: After HaCaT cells were infected with the anthropophilic Trichophyton rubrum (T rubrum) and the geophilic Microsporum gypseum (M gypseum), 118 and 619 differentially expressed genes were identified in HaCaT cells, respectively. These genes may provide a clue as to how keratinocytes respond to anthropophilic and geophilic dermatophytes. We also found that JUN may play a critical role in keratinocytes infected with M gypseum. CONCLUSIONS: Differential gene expression in HaCaT cells may account for the various clinical presentation caused by anthropophilic and geophilic dermatophytes infections. In addition, the intense inflammatory reaction of M gypseum infection may be triggered by activating the JNK-JUN signalling pathway.


Subject(s)
Arthrodermataceae , Host-Pathogen Interactions/immunology , Keratinocytes/metabolism , Keratinocytes/microbiology , Arthrodermataceae/pathogenicity , Cell Line , Dermatomycoses/genetics , Dermatomycoses/immunology , Dermatomycoses/microbiology , Gene Expression Profiling , Humans , Keratinocytes/immunology , Microsporum/pathogenicity , Signal Transduction/genetics , Trichophyton/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...