Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(8): 4440-4455, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554115

ABSTRACT

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.


Subject(s)
Bacteriophages , RNA-Binding Proteins , Bacteriophages/physiology , Cell Nucleus/metabolism , CRISPR-Cas Systems , Genome, Viral , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Assembly
2.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260510

ABSTRACT

Bacteria and the viruses that infect them (bacteriophages or phages) are engaged in an evolutionary arms race that has resulted in the development of hundreds of bacterial defense systems and myriad phage-encoded counterdefenses1-5. While the mechanisms of many bacterial defense systems are known1, how these systems avoid toxicity outside infection yet activate quickly upon sensing phage infection is less well understood. Here, we show that the bacterial Phage Anti-Restriction-Induced System (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefense protein Ocr. Using cryoelectron microscopy (cryoEM), we show that AriA is structurally similar to dimeric SMC-family ATPases but assembles into a distinctive homohexameric complex through two distinct oligomerization interfaces. In the absence of infection, the AriA hexamer binds up to three monomers of AriB, maintaining them in an inactive state. Ocr binding to the AriA-AriB complex triggers rearrangement of the AriA hexamer, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease whose activation arrests cell growth and inhibits phage propagation by globally inhibiting protein translation. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defense system that evolved in response to a phage counterdefense protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.

3.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790334

ABSTRACT

Large-genome bacteriophages (jumbo phages) of the Chimalliviridae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.

4.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398033

ABSTRACT

Muscular atrophy is a mortality risk factor that happens with disuse, chronic disease, and aging. Recovery from atrophy requires changes in several cell types including muscle fibers, and satellite and immune cells. Here we show that Zfp697/ZNF697 is a damage-induced regulator of muscle regeneration, during which its expression is transiently elevated. Conversely, sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Myofiber-specific Zfp697 ablation hinders the inflammatory and regenerative response to muscle injury, compromising functional recovery. We uncover Zfp697 as an essential interferon gamma mediator in muscle cells, interacting primarily with ncRNAs such as the pro-regenerative miR-206. In sum, we identify Zfp697 as an integrator of cell-cell communication necessary for tissue regeneration.

5.
Protein Sci ; 31(7): e4374, 2022 07.
Article in English | MEDLINE | ID: mdl-35762727

ABSTRACT

The widespread CBASS (cyclic oligonucleotide-based anti-phage signaling system) immune systems in bacteria protect their hosts from bacteriophage infection by triggering programmed cell death. CBASS systems all encode a cyclic oligonucleotide synthase related to eukaryotic cGAS but use diverse regulators and effector proteins including nucleases, phospholipases, and membrane-disrupting proteins to effect cell death. Cap18 is a predicted 3'-5' exonuclease associated with hundreds of CBASS systems, whose structure, biochemical activities, and biological roles remain unknown. Here we show that Cap18 is a DEDDh-family exonuclease related to the bacterial exonucleases RNase T and Orn and has nonspecific 3'-5' DNA exonuclease activity. Cap18 is commonly found in CBASS systems with associated CapW or CapH+CapP transcription factors, suggesting that it may coordinate with these proteins to regulate CBASS transcription in response to DNA damage. These data expand the repertoire of enzymatic activities associated with bacterial CBASS systems and provide new insights into the regulation of these important bacterial immune systems.


Subject(s)
Bacteria , Exonucleases , Eukaryota , Membrane Proteins , Oligonucleotides , Phosphodiesterase I
SELECTION OF CITATIONS
SEARCH DETAIL
...