Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Chem Theory Comput ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775818

ABSTRACT

Conical intersection (CI) seams are configuration spaces of a molecular system where two or more (spin) adiabatic electronic states are degenerate in energy. They play essential roles in photochemistry because nonradiative decays often occur near the minima of the seam, i.e., the minimum energy CIs (MECIs). Thus, it is important to explore the CI seams and discover the MECIs. Although various approaches exist for CI seam exploration, most of them are local in nature, requiring reasonable initial guesses of geometries and nuclear gradients during the search. Global search algorithms, on the other hand, are powerful because they can fully sample the configurational space and locate important MECIs missed by local algorithms. However, global algorithms are often computationally expensive for large systems due to their poor scalability with respect to the number of degrees of freedom. To overcome this challenge, we develop the parallel on-the-fly Crystal algorithm to globally explore the CI seam space, taking advantage of its superior scaling behavior. Specifically, Crystal is coupled with on-the-fly evaluations of the excited and ground state energies using multireference electronic structure methods. Meanwhile, the algorithm is parallelized to further boost its computational efficiency. The effectiveness of this new algorithm is tested for three types of molecular photoswitches of significant importance in material and biomedical sciences: photostatin (PST), stilbene, and butadiene. A rudimentary implementation of the algorithm is applied to PST and stilbene, resulting in the discovery of all previously identified MECIs and several new ones. A refined version of the algorithm, combined with a systematic clustering technique, is applied to butadiene, resulting in the identification of an unprecedented number of energetically accessible MECIs. The results demonstrate that the parallel on-the-fly Crystal algorithm is a powerful tool for automated global CI seam exploration.

2.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38464317

ABSTRACT

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with either H+, Li+, or Na+, but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt, as well as the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport still remain poorly understood. We have solved two x-ray crystal structures of MelBSt cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published previously. We determined the energetic contributions of three major Na+-binding residues in cation selectivity for Na+ and H+ by the free energy simulations. The D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport with poor activities at higher ΔpH and better activities at reversal ΔpH was observed, supporting that the membrane potential is the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket.

3.
Elife ; 122024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381130

ABSTRACT

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Subject(s)
Membrane Transport Proteins , Sodium Chloride , Ion Transport , Cations , Sugars
4.
J Phys Chem B ; 127(51): 10987-10999, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38096487

ABSTRACT

Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the n-heptane substrate catalyzed by Agrocybe aegerita UPO (AaeUPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in AaeUPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of AaeUPO, which will be instrumental in the rational design of UPOs with enhanced properties.


Subject(s)
Hydrogen , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Hydrogen/chemistry , Hydroxylation , Oxygen
5.
RSC Adv ; 13(47): 33463-33470, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38025852

ABSTRACT

Mass loading is an important parameter to evaluate the application potential of active materials in high-capacity supercapacitors. Synthesizing active materials with high mass loading is a promising strategy to improve high performance energy storage devices. Preparing electrode materials with a porous structure is of significance to overcome the disadvantages brought by high mass loading. In this work, a Mn3O4/NiMoO4@NiCo layered double hydroxide (MO/NMO/NiCo LDH) positive electrode is fabricated on a carbon cloth with a high mass loading of 20.4 mg cm-2. The MO/NMO/NiCo LDH presents as a special three-dimensional porous nanostructure and exhibits a high specific capacitance of 815 F g-1 at 1 A g-1. Impressively, the flexible supercapacitor based on the MO/NMO/NiCo LDH positive electrode and an AC negative electrode delivers a maximum energy density of 22.5 W h kg-1 and a power density of 8730 W kg-1. It also retains 60.84% of the original specific capacitance after bending to 180° 600 times. Moreover, it exhibits 76.92% capacitance retention after 15 000 charge/discharge cycles. These results make MO/NMO/NiCo LDH one of the most attractive candidates of positive electrode materials for high-performance flexible supercapacitors.

6.
bioRxiv ; 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37790566

ABSTRACT

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.

7.
J Phys Chem B ; 127(41): 8809-8824, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37796883

ABSTRACT

Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.


Subject(s)
Cytochrome P-450 Enzyme System , Hydrogen Peroxide , Cytochrome P-450 Enzyme System/chemistry , Molecular Dynamics Simulation , Catalysis
8.
J Chem Theory Comput ; 19(18): 6484-6499, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37607344

ABSTRACT

Molecular photoswitches offer precise, reversible photocontrol over biomolecular functions and are promising light-regulated drug candidates with minimal side effects. Quantifying thermal isomerization rates of photoswitches in their target biomolecules is essential for fine-tuning their light-controlled drug activity. However, the effects of protein binding on isomerization kinetics remain poorly understood, and simulations are crucial for filling this gap. Challenges in the simulation include describing multireference electronic structures near transition states, disentangling competing reaction pathways, and sampling protein-ligand interactions. To overcome these challenges, we used multiscale simulations to characterize the thermal isomerization of photostatins (PSTs), which are light-regulated microtubule inhibitors for potential cancer phototherapy. We employed a new ab initio multireference electronic structure method in a quantum mechanics/molecular mechanics setting and combined it with enhanced sampling techniques to characterize the cis to trans free-energy profiles of three PSTs in a vacuum, aqueous solution, and tubulin dimer. The significant advantage of our novel approach is the efficient treatment of the multireference character in PSTs' electronic wavefunction throughout the conformational sampling of protein-ligand interactions along their isomerization pathways. We also benchmarked our calculations using high-level ab initio multireference electronic structure methods and explored the competing isomerization pathways. Notably, calculations in a vacuum and implicit solvent models cannot predict the order of the PSTs' thermal half-lives in the aqueous solution observed in the experiment. Only by explicitly treating the solvent molecules can the correct order of isomerization kinetics be reproduced. Protein binding perturbs free-energy barriers due to hydrogen bonding between PSTs and nearby polar residues. Our work generates comprehensive, high-quality benchmark data and offers guidance for selecting computational methods to study the thermal isomerization of photoswitches. Ab initio multireference free-energy calculations in explicit molecular environments are crucial for predicting the effects of substituents on the thermal half-lives of photoswitches in biological systems.


Subject(s)
Molecular Dynamics Simulation , Water , Isomerism , Ligands , Solvents/chemistry , Water/chemistry
9.
PLoS One ; 18(1): e0280186, 2023.
Article in English | MEDLINE | ID: mdl-36662900

ABSTRACT

Canine distemper virus remains an important source of morbidity and mortality in animal shelters. RT-PCR is commonly used to aid diagnosis and has been used to monitor dogs testing positive over time to gauge the end of infectious potential. Many dogs excrete viral RNA for prolonged periods which has complicated disease management. The goal of this retrospective study was to describe the duration and characteristics of viral RNA excretion in shelter dogs with naturally occurring CDV and investigate the relationship between that viral RNA excretion and infectious potential using virus isolation data. Records from 98 different humane organizations with suspect CDV were reviewed. A total of 5,920 dogs were tested with 1,393; 4,452; and 75 found to be positive, negative, or suspect on RT-PCR respectively. The median duration of a positive test was 34 days (n = 325), and 25% (82/325) of the dogs still excreting viral RNA after 62 days of monitoring. Virus isolation was performed in six dogs who were RT-PCR positive for > 60 days. Infectious virus was isolated only within the first two weeks of monitoring at or around the peak viral RNA excretion (as detected by the lowest cycle threshold) reported for each dog. Our findings suggest that peak viral RNA excretion and the days surrounding it might be used as a functional marker to gauge the end of infectious risk. Clarifying the earliest point in time when dogs testing positive for canine distemper by RT-PCR can be considered non-contagious will improve welfare and lifesaving potential of shelters by enabling recovered dogs to be cleared more quickly for live release outcomes.


Subject(s)
Distemper Virus, Canine , Distemper , Dogs , Animals , Distemper Virus, Canine/genetics , Retrospective Studies , RNA, Viral/genetics
10.
J Chem Phys ; 156(24): 245102, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35778097

ABSTRACT

Molecular photoswitches are widely used in photopharmacology, where the biomolecular functions are photo-controlled reversibly with high spatiotemporal precision. Despite the success of this field, it remains elusive how the protein environment modulates the photochemical properties of photoswitches. Understanding this fundamental question is critical for designing more effective light-regulated drugs with mitigated side effects. In our recent work, we employed first-principles non-adiabatic dynamics simulations to probe the effects of protein on the trans to cis photoisomerization of phototrexate (PTX), a photochromic analog of the anticancer therapeutic methotrexate that inhibits the target enzyme dihydrofolate reductase (DHFR). Building upon this study, in this work, we employ multiscale simulations to unravel the full photocycle underlying the light-regulated reversible inhibition of DHFR by PTX, which remains elusive until now. First-principles non-adiabatic dynamics simulations reveal that the cis to trans photoisomerization quantum yield is hindered in the protein due to backward isomerization on the ground-state following non-adiabatic transition, which arises from the favorable binding of the cis isomer with the protein. However, free energy simulations indicate that cis to trans photoisomerization significantly decreases the binding affinity of the PTX. Thus, the cis to trans photoisomerization most likely precedes the ligand unbinding from the protein. We propose the most probable photocycle of the PTX-DHFR system. Our comprehensive simulations highlight the trade-offs among the binding affinity, photoisomerization quantum yield, and the thermal stability of the ligand's different isomeric forms. As such, our work reveals new design principles of light-regulated drugs in photopharmacology.


Subject(s)
Molecular Dynamics Simulation , Tetrahydrofolate Dehydrogenase , Isomerism , Ligands
11.
J Mol Biol ; 434(12): 167598, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35461877

ABSTRACT

Cation selectivity and coupling are important attributes of cation-coupled symporters. Salmonella typhimurium melibiose permease (MelBSt) catalyzes the co-transport of galactosides with cations (H+, Li+, or Na+). 3-D crystal structures of MelBSt have revealed the molecular recognition for sugar substrates, but the cation binding and coupling mechanisms have not been defined to atomic levels. In its human homolog MFSD2A, a lethal mutation was mapped at its Na+-binding pocket; however, none of the structures in this subfamily resolved its cation binding. In this study, molecular dynamics simulations reveal the binding interactions of Na+ and Li+ with MelBSt. Interestingly, Thr121, the lethal mutation position in MFSD2A, forms stable interaction with Na+ but is at a distance from Li+. Most mutations among 11 single-site Thr121 mutants of MelBSt exhibited little effects on the galactoside binding, but largely altered the cation selectivity with severe inhibitions on Na+ binding. Few mutants (Pro and Ala) completely lost the Na+ binding and Na+-coupled transport, but their Li+ or H+ modes of activity were largely retained. It can be concluded that Thr121 is necessary for Na+ binding, but not required for the binding of H+ or Li+, so a subset of the Na+-binding pocket is enough for Li+ binding. In addition, the protein stability for some mutants can be only retained in the presence of Li+, but not by Na+ due to the lack of affinity. This finding, together with other identified thermostable mutants, supports that the charge balance of the cation-binding site plays an important role in MelBSt protein stability.


Subject(s)
Bacterial Proteins , Salmonella typhimurium , Symporters , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/metabolism , Humans , Lithium/metabolism , Melibiose/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Sodium/metabolism , Symporters/chemistry , Symporters/genetics , Symporters/metabolism
12.
RSC Adv ; 12(10): 5910-5918, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35424579

ABSTRACT

NiCo metal-organic framework (MOF) electrodes were prepared by a simple hydrothermal method. The flower-like NiCo MOF electrode exhibited an exciting potential window of 1.2 V and an excellent specific capacitance of 927.1 F g-1 at 1 A g-1. The flower-like NiCo MOF//activated carbon (AC) device delivered a high energy density of 28.5 W hkg-1 at a power density of 400.5 W kg-1 and good cycle stability (95.4% after 5000 cycles at 10 A g-1). Based on the flower-like NiCo MOF electrode, the asymmetric quasi-solid-state flexible supercapacitor (AFSC) was prepared and exhibited good capacitance retention after bending (79% after 100 bends and 64.4% after 200 bends). Furthermore, two AFSCs in series successfully lit up ten parallel red LED lights, showing great application potential in flexible and wearable energy storage devices.

13.
J Phys Chem B ; 126(12): 2382-2393, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35297246

ABSTRACT

Molecular photoswitches permit using light to control protein activity with high spatiotemporal resolutions, thereby alleviating the side effects of conventional chemotherapy. However, due to the challenges in probing ultrafast photoisomerization reactions in biological environments, it remains elusive how the protein influences the photochemistry of the photoswitches, which hampers the rational design of light-regulated therapeutics. To overcome this challenge, we employed first-principles nonadiabatic dynamics simulations to characterize the photodynamics of the phototrexate (PTX), a recently developed photoswitchable anticancer chemotherapeutic that reversibly inhibits its target enzyme dihydrofolate reductase (DHFR). Our simulations show that the protein environment impedes the trans to cis photoisomerization of the PTX. The confinement in the ligand-binding cavity slows down the isomerization kinetics and quantum yield of the photoswitch by reshaping its conical intersection, increasing its excited-state free-energy barrier and quenching its local density fluctuations. Also, the protein environment results in a suboptimal binding mode of the photoproduct that needs to undergo large structural rearrangement to effectively inhibit the enzyme. Therefore, we predict that the PTX's trans → cis photoisomerization in solution precedes its binding with the protein, despite the favorable binding energy of the trans isomer. Our findings highlight the importance of the protein environment on the photochemical reactions of the molecular photoswitches. As such, our work represents an important step toward the rational design of light-regulated drugs in photopharmacology.


Subject(s)
Quantum Theory , Tetrahydrofolate Dehydrogenase , Isomerism , Kinetics , Ligands
14.
Phys Chem Chem Phys ; 23(46): 26263-26272, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34787133

ABSTRACT

Luminogens exhibiting aggregation-induced-emission characteristics (AIEgens) have been designed as sensitive biosensors thanks to their "turn-on" fluorescence upon target binding. However, their AIE mechanism in biomolecules remains elusive except for the qualitative picture of restricted intramolecular motions. In this work, we employed ab initio simulations to investigate the AIE mechanism of two tetraphenylethylene derivatives recently developed for sensitive detection of human serum albumin (HSA) in biological fluids. For the first time, we quantified the ab initio free energy surfaces and kinetics of AIEgens to access the conical intersections on the excited state in the protein and aqueous solution, using a novel first-principles electronic structure method that incorporates both static and dynamic electron correlations. Our simulations accurately reproduce the experimental spectra and high-level correlated electronic structure calculations. We found that in HSA the internal conversion through the cyclization reaction is preferred over the isomerization around the central ethylenic double bond, whereas in the aqueous solution the reverse is true. Accordingly, the protein environment is able to moderately speed up certain non-radiative decay pathways, a new finding that is beyond the prediction of the existing model of restricted access to a conical intersection (RACI). As such, our findings highlight the complicated effects of the protein confinement on the competing non-radiative decay channels, which has been largely ignored so far, and extend the existing theories of AIE to biological systems. The new insights and the multiscale computational methods used in this work will aid the design of sensitive AIEgens for bioimaging and disease diagnosis.


Subject(s)
Fluorescent Dyes/chemistry , Serum Albumin, Human/chemistry , Stilbenes/chemistry , Density Functional Theory , Fluorescence , Humans , Models, Molecular , Molecular Structure , Optical Imaging , Protein Aggregates
15.
Nanomaterials (Basel) ; 11(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068548

ABSTRACT

In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.

16.
J Chem Theory Comput ; 17(5): 3019-3030, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33882676

ABSTRACT

The photoisomerization of azobenzene is a prototypical reaction of various light-activated processes in material and biomedical sciences. However, its reaction mechanism has been under debate for decades, partly due to the challenges in computational simulations to accurately describe the molecule's photodynamics. A recent study (J. Am. Chem. Soc. 2020, 142 (49), 20,680-20,690) addressed the challenges by combining the hole-hole Tamm-Dancoff Approximated (hh-TDA) density functional theory (DFT) method with the ab initio multiple spawning (AIMS) algorithm. The hh-TDA-DFT/AIMS method was applied to first-principles nonadiabatic dynamics simulation of azobenzene's photodynamics in the vacuum. However, it remains necessary to benchmark this new method in realistic molecular environments against experimental data. In the current work, the hh-TDA-DFT/AIMS method was employed in a quantum mechanics/molecular mechanics setting to characterize the trans azobenzene's photodynamics in explicit methanol and n-hexane solvents, following both the S1 (nπ*) and S2 (ππ*) excitations. The simulated absorption and fluorescence spectra following the S2 excitation quantitatively agree with the experiments. However, the hh-TDA-DFT method overestimates the torsional barrier on the S1 state, leading to an overestimation of the S1 state lifetime. The excited-state population decays to the ground state through two competing channels. The reactive channel partially yields the cis azobenzene photoproduct, and the unreactive channel exclusively leads to the reactant. The S2 excitation increases the decay through the unreactive channel and thus decreases the isomerization quantum yield compared to the S1 excitation. The solvent slows down the azobenzene's torsional dynamics on the S1 state, but its polarity minimally affects the reaction kinetics and quantum yields. Interestingly, the dynamics of the central torsion and angles of azobenzene play a critical role in determining the final isomer of the azobenzene. This benchmark study validates the hh-TDA-DFT/AIMS method's accuracy for simulating the azobenzene's photodynamics in realistic molecular environments.

17.
J Am Chem Soc ; 143(14): 5425-5437, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33794085

ABSTRACT

Channelrhodopsin 2 (ChR2) is the most commonly used tool in optogenetics. Because of its faster photocycle compared to wild-type (WT) ChR2, the E123T mutant of ChR2 is a useful optogenetic tool when fast neuronal stimulation is needed. Interestingly, in spite of its faster photocycle, the initial step of the photocycle in E123T (photoisomerization of retinal protonated Schiff base or RPSB) was found experimentally to be much slower than that of WT ChR2. The E123T mutant replaces the negatively charged E123 residue with a neutral T123 residue, perturbing the electric field around the RPSB. Understanding the RPSB photoisomerization mechanism in ChR2 mutants will provide molecular-level insights into how ChR2 photochemical reactivity can be controlled, which will lay the foundation for improving the design of optogenetic tools. In this work, we combine ab initio nonadiabatic dynamics simulation, excited state free energy calculation, and reaction path search to comprehensively characterize the RPSB photoisomerization mechanism in the E123T mutant of ChR2. Our simulation agrees with previous experiments in predicting a red-shifted absorption spectrum and significant slowdown of photoisomerization in the E123T mutant. Interestingly, our simulations predict similar photoisomerization quantum yields for the mutant and WT despite the differences in excited-state lifetime and absorption maximum. Upon mutation, the neutralization of the negative charge on the E123 residue increases the isomerization barrier, alters the reaction pathway, and changes the relative stability of two fluorescent states. Our findings provide new insight into the intricate role of the electrostatic environment on the RPSB photoisomerization mechanism in microbial rhodopsins.


Subject(s)
Channelrhodopsins/chemistry , Photochemical Processes , Static Electricity , Isomerism , Models, Molecular , Protein Conformation , Quantum Theory
18.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33674467

ABSTRACT

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


Subject(s)
Adaptation, Physiological , Bacterial Proteins/chemistry , Evolution, Molecular , Steroid Isomerases/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Enzyme Stability , Mutation , Steroid Isomerases/genetics , Temperature
19.
J Am Chem Soc ; 142(49): 20680-20690, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33228358

ABSTRACT

Azobenzene is one of the most ubiquitous photoswitches in photochemistry and a prototypical model for photoisomerizing systems. Despite this, its wavelength-dependent photochemistry has puzzled researchers for decades. Upon excitation to the higher energy ππ* excited state instead of the dipole-forbidden nπ* state, the quantum yield of isomerization from trans- to cis-azobenzene is halved. The difficulties associated with unambiguously resolving this effect both experimentally and theoretically have contributed to lasting controversies regarding the photochemistry of azobenzene. Here, we systematically characterize the dynamic photoreaction pathways of azobenzene by performing first-principles simulations of the nonadiabatic dynamics following excitation to both the ππ* and the nπ* states. We demonstrate that ground-state recovery is mediated by two distinct S1 decay pathways: a reactive twisting pathway and an unreactive planar pathway. Increased preference for the unreactive pathway upon ππ* excitation largely accounts for the wavelength-dependent behavior observed in azobenzene.

20.
J Am Chem Soc ; 141(45): 18193-18203, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31621314

ABSTRACT

The conversion of light energy into work is essential to life on earth. Bacteriorhodopsin (bR), a light-activated proton pump in Archae, has served for many years as a model system for the study of this process in photoactive proteins. Upon absorption of a photon, its chromophore, the retinal protonated Schiff base (RPSB), isomerizes from its native all-trans form to a 13-cis form and pumps a proton out of the cell in a process that is coupled to eventual ATP synthesis. Despite numerous time-resolved spectroscopic studies over the years, the details of the photodynamics of bR on the excited state, particularly the characterization of the I fluorescent state, the time-resolved reaction mechanism, and the role of the counterion cluster of RPSB, remain uncertain. Here, we use ab initio multiple spawning (AIMS) with spin-restricted ensemble Kohn-Sham (REKS) theory to simulate the nonadiabatic dynamics of the ultrafast photoreaction in bR. The excited state dynamics can be partitioned into three distinct phases: (1) relaxation away from the Franck-Condon region dominated by changes in retinal bond length alternation, (2) dwell time on the excited state in the I fluorescent state featuring an untwisted, bond length inverted RPSB, and (3) rapid torsional evolution to the conical intersection after overcoming a small excited state barrier. We fully characterize the I fluorescent state and the excited state barrier that hinders direct evolution to the conical intersection following photoexcitation. We also find that photoisomerization is accompanied by weakening of the interaction between RPSB and its counterion cluster. However, in contradiction with a recent time-resolved X-ray experiment, hydrogen bond cleavage is not necessary to reproduce the observed photoisomerization dynamics.


Subject(s)
Bacteriorhodopsins/chemistry , Retinaldehyde/analogs & derivatives , Schiff Bases/chemistry , Bacteriorhodopsins/radiation effects , Density Functional Theory , Fluorescence , Halobacterium salinarum/chemistry , Light , Models, Chemical , Models, Molecular , Retinaldehyde/radiation effects , Schiff Bases/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...