Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842950

ABSTRACT

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.

2.
J Hazard Mater ; 475: 134869, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38870857

ABSTRACT

Photoreduction of highly toxic U(VI) to less toxic U(IV) is crucial for mitigating radioactive contamination. Herein, a CoWO4/TpDD p-n heterojunction is synthesized, with TpDD serving as the n-type semiconductor substrate and CoWO4 as the p-type semiconductor grown in situ on its surface. The Fermi energy difference between TpDD and CoWO4 provides the electrochemical potential for charge-hole separation. Moreover, the Coulombic forces from the distinct carrier types between the two materials synergistically facilitate the transfer of electrons and holes. Hence, an internal electric field directed from TpDD to CoWO4 is established. Under photoexcitation conditions, charges and holes migrate efficiently along the curved band and internal electric field, further enhancing charge-hole separation. As a result, the removal capacity of CoWO4/TpDD increases from 515.2 mg/g in the dark to 1754.6 mg/g under light conditions. Thus, constructing a p-n heterojunction proves to be an effective strategy for remediating uranium-contaminated environments.

3.
Anal Chem ; 96(11): 4623-4631, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456770

ABSTRACT

Developing new electrochemiluminescence (ECL) luminators with high stability, wide applicability, and strong designability is of great strategic significance to promote the ECL field to the frontier. Here, driven by the I···N bond, 1,3,5-trifluoro-2,4,6-triiodobenzene (TFTI) and 2,4,6-trimethyl-1,3,5-triazine (TMT) self-assembled into a novel halogen cocrystal (TFTI-TMT) through slow solution volatilization. Significant difference of charge density existed between the N atoms on TMT and the σ-hole of the I atoms on TFTI. Upon the induction of σ-hole effect, high-speed and spontaneous charge transferring from TMT to the σ-hole of TFTI occurred, stimulating exciting ECL signals. Besides, the σ-hole of the I atoms could capture iodine ions specifically, which blocked the original charge transfer from the N atoms to the σ-hole, causing the ECL signal of TFTI-TMT to undergo a quenching rate as high as 92.9%. Excitingly, the ECL sensing of TFTI-TMT toward I- possessed a wide linear range (10-5000 nM) and ultralow detection limit (3 nM) in a real water sample. The halogen cocrystal strategy makes σ-hole a remarkable new viewpoint of ECL luminator design and enables ECL analysis technology to contribute to addressing the environmental and health threats posed by iodide pollution.

4.
Anal Chem ; 96(12): 5037-5045, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38477697

ABSTRACT

Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 µM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.

5.
Chem Commun (Camb) ; 60(26): 3583-3586, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470082

ABSTRACT

An imidazolyl hydrogen-bonded organic framework (HOF-T) with outstanding thermal and water stability was constructed by C-H⋯N hydrogen bonding and C-H⋯π interactions. UO22+ can be selectively captured by the imidazole group of HOF-T and rapidly reduced to UO2 under visible light irradiation, realizing exceptional uranium removal with high capacity and fast kinetics.

6.
Nat Commun ; 15(1): 1558, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378705

ABSTRACT

Extracting rare earth elements (REEs) from wastewater is essential for the growth and an eco-friendly sustainable economy. However, it is a daunting challenge to separate individual rare earth elements by their subtle differences. To overcome this difficulty, we report a unique REE nanotrap that features dense uncoordinated carboxyl groups and triazole N atoms in a two-fold interpenetrated metal-organic framework (named NCU-1). Notably, the synergistic effect of suitable pore sizes and REE nanotraps in NCU-1 is highly responsive to the size variation of rare-earth ions and shows high selectivity toward light REE. As a proof of concept, Pr/Lu and Nd/Er are used as binary models, which give a high separation factor of SFPr/Lu = 796 and SFNd/Er = 273, demonstrating highly efficient separation over a single step. This ability achieves efficient and selective extraction and separation of REEs from mine tailings, establishing this platform as an important advance for sustainable obtaining high-purity REEs.

7.
Anal Chem ; 96(8): 3553-3560, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38362858

ABSTRACT

Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.

8.
J Hazard Mater ; 465: 133488, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219593

ABSTRACT

Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.

9.
Small ; : e2310672, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38229539

ABSTRACT

At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.

10.
Angew Chem Int Ed Engl ; 62(52): e202313970, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37953692

ABSTRACT

Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI-COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI-COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.

11.
Chem Commun (Camb) ; 59(62): 9521-9524, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37455640

ABSTRACT

Herein, a novel fluorescent ionic covalent organic framework (BTTA-BDNP) based on a linked carbazole unit was constructed for the synchronous monitoring and capture of TcO4-/ReO4-. BTTA-BDNP has a fast fluorescence response time with a low detection limit (66.7 nM) for ReO4- (a non-radioactive substitute for TcO4-). Meanwhile, the high charge density and hydrophobic skeleton of BTTA-BDNP enable it to exhibit rapid and selective trapping of ReO4- in complex environments.

12.
Anal Chem ; 95(28): 10803-10811, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37401846

ABSTRACT

The structural isomerism of the covalent organic framework (COF) has a significant effect on the electrochemiluminescence (ECL) performance. Herein, we report a pair of isomeric COFs, (TFPB-BD(OMe)2-H and TAPB-BD(OMe)2-H), based on the different directions of imine linkages and further conversion of the imine to the quinoline structure. The obtained two isomeric COFs with the same composition and similar structures exhibit dramatic differences in the photoelectrochemical and ECL fields. Indeed, TFPB-BD(OMe)2-H demonstrates robust ECL emission superior to that of TAPB-BD(OMe)2-H. The difference in ECL performance is due to the stronger polar interaction of TFPB-BD(OMe)2-H than that of TAPB-BD(OMe)2-H. The polarity is derived from the uneven charge distribution within the framework and enhances the electron interactions. In addition, the ordered conjugate skeleton provides high-speed charge transport channels for carrier transport. Therefore, the TFPB-BD(OMe)2-H presents a smaller band gap energy and stronger polarization interaction, which are more favorable to charge migration to achieve stronger ECL signals. Furthermore, we describe a convenient ECL sensor for detecting toxic As(V) with an outstanding detection property and ultralow detection limit. This work provides a guiding principle for the design and development of ECL organic luminophores.

13.
Nat Commun ; 14(1): 4420, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37479725

ABSTRACT

The type of reactions and the availability of monomers for the synthesis of sp2-c linked covalent organic frameworks (COFs) are considerably limited by the irreversibility of the C=C bond. Herein, inspired by the Claisen-Schmidt condensation reaction, two propenone-linked (C=C-C=O) COFs (named Py-DAB and PyN-DAB) are developed based on the base-catalyzed nucleophilic addition reaction of ketone-activated α-H with aromatic aldehydes. The introduction of propenone structure endows COFs with high crystallinity, excellent physicochemical stability, and intriguing optoelectronic properties. Benefitting from the rational design on the COFs skeleton, Py-DAB and PyN-DAB are applied to the extraction of radionuclide uranium. In particular, PyN-DAB shows excellent removal rates (>98%) in four uranium mine wastewater samples. We highlight that such a general strategy can provide a valuable avenue toward various functional porous crystalline materials.

14.
Anal Chem ; 95(22): 8696-8705, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37224420

ABSTRACT

The application of covalent organic frameworks (COFs) in electrochemiluminescence (ECL) is promising in environmental monitoring. Developing an emerging design strategy to expand the class of COF-based ECL luminophores is highly desirable. Here, a COF-based host-guest system was constructed through guest molecular assembly to deal with nuclear contamination analysis. The efficient charge transport network was formed by inserting an electron-withdrawing guest tetracyanoquinodimethane (TCNQ) into the open space of the COF host (TP-TBDA; TP = 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde and TBDA = 2,5-di(thiophen-2-yl)benzene-1,4-diamine) with an electron-donating property; the construction of the COF-based host-guest system (TP-TBDA@TCNQ) triggered the ECL emission of non-emitting TP-TBDA. Furthermore, the dense active sites in TP-TBDA were utilized to capture the target substance UO22+. The presence of UO22+ broke the charge-transfer effect in TP-TBDA@TCNQ, resulting in the weakening of the ECL signal, thus the established ECL system integrating the low detection limit with high selectivity monitors UO22+. This COF-based host-guest system provides a novel material platform for constructing late-model ECL luminophores and creates an opportunity for the vigorous ECL technology.

15.
Small ; 19(39): e2302254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37236205

ABSTRACT

Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of photoelectric COFs has to meet overmuch high conditions, limiting the breakthrough and modulation in photoelectric responses. Herein, the study reports a creative "lock-key model" based on molecular insertion strategy. A COF with suitable cavity size, TP-TBDA, is used as the host to load guests. Merely through the volatilization of mixed solution, TP-TBDA and guests can be spontaneously assembled via non-covalent interactions (NCIs) to produce molecular-inserted COFs (MI-COFs). The NCIs between TP-TBDA and guests acted as a bridge to facilitate charge transfer in MI-COFs, unlocking the photoelectric responses of TP-TBDA. By exploiting the controllability of NCIs, the MI-COFs can realize the smart modulation of photoelectric responses by simply changing the guest molecule, thus avoiding the arduous selection of monomers and condensation reactions required by conventional COFs. The construction of molecular-inserted COFs circumvents complicated procedures for achieving performance improvement and modulation, providing a promising direction to construct late-model photoelectric responsive materials.

16.
J Hazard Mater ; 455: 131581, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37167874

ABSTRACT

Plasmonic photocatalysis is an effective strategy to solve radioactive uranium hazards in wastewater. A plasmonic photocatalyst Bi/Bi2O3-x@COFs was synthesized by in-situ growth of covalent organic frameworks (COFs) on Bi/Bi2O3-x surface for the U(VI) adsorption and plasmonic photoreduction in rare earth tailings wastewater. The presence of oxygen vacancy in Bi/Bi2O3-x and Schottky potential well formed by Bi and Bi2O3-x interface increased the number of free electrons, which induced localized surface plasmon resonance (LSPR) and enhanced the light absorption performance of composites. In addition, oxygen vacancy improved the Fermi level of Bi/Bi2O3-x, leading to another potential well between Bi2O3-x and COFs interface. The electron transport direction was reversed, thus increasing the electron density of COFs layer. COFs was an N-type semiconductor with specific binding U(VI) groups and suitable band structure, which could be used as an active reaction site. Bi/Bi2O3-x@COFs had 1411.5 mg g-1 removal capacity and high separation coefficient for U(VI) due to the synergistic action of photogenerated electrons and hot electrons. Moreover, the removal rate of uranium from rare earth tailings wastewater by regenerated Bi/Bi2O3-x@COFs was over 93.9%. The scheme of introducing LSPR and Schottky potential well provides another way to improve the photocatalytic effect.

17.
Small ; 19(27): e2207798, 2023 07.
Article in English | MEDLINE | ID: mdl-37012604

ABSTRACT

Nanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity. On the contrary, Tph-BT showed weak peroxidase activity, and the presence of ssDNA, particularly poly-cytosine (C) sequences, can remarkably enhance the peroxidase activity. The influence of base type, base length, and other factors on the activities of two enzymes is also studied, and the results reveal that the adsorption of ssDNA on the surface of Tph-BT prevented intersystem crossing (ISC) and energy transfer processes to reduce 1 O2 generation, while the electrostatic interaction between ssDNA and TMB enhanced Tph-BT's affinity for TMB to facilitate the electron transfer from TMB to • OH. This study investigates multitype mimetic enzyme activities of nonmetallic D-A conjugated COFs and demonstrates their feasibility of regulation by ssDNA.


Subject(s)
Metal-Organic Frameworks , Oxidoreductases , DNA, Single-Stranded , Antioxidants , Peroxidases , Peroxidase/metabolism , Colorimetry/methods
18.
Anal Chem ; 95(10): 4703-4711, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36856710

ABSTRACT

Nanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO22+. Tph-BT exhibits excellent oxidase activity and weak peroxidase activity, and it is surprising to find that the UO22+-specific DNA aptamer can significantly inhibit the oxidase activity while greatly enhancing the peroxidase activity. The present UO22+ interacts with the DNA aptamer to form secondary structures and detaches from the surface of Tph-BT, thereby restoring the enzymatic activity of Tph-BT. Based on the reversed regulation effects of the DNA aptamer on the two types of enzymatic activities of Tph-BT, a novel "off-on" and "on-off" sensing platform can be constructed for the colorimetric analysis of UO22+. This research demonstrates that ssDNA can effectively regulate the different types of enzymatic activities of single COFs and achieve the sensitive and selective colorimetric analysis of radionuclides by the naked eye.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Metal-Organic Frameworks , Uranium , DNA, Catalytic/chemistry , Uranium/analysis , Aptamers, Nucleotide/chemistry , Colorimetry , Metal-Organic Frameworks/chemistry , Oxidoreductases , DNA, Single-Stranded , Peroxidases
19.
J Hazard Mater ; 451: 131189, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36933503

ABSTRACT

Photocatalytic reduction of UVI to UIV can help remove U from the environment and thus reduce the harmful impacts of radiation emitted by uranium isotopes. Herein, we first synthesized Bi4Ti3O12 (B1) particles, then B1 was crosslinked with 6-chloro-1,3,5-triazine-diamine (DCT) to afford B2. Finally, B3 was formed using B2 and 4-formylbenzaldehyde (BA-CHO) to investigate the utility of the D-π-A array structure for photocatalytic UVI removal from rare earth tailings wastewater. B1 lacked adsorption sites and displayed a wide band gap. The grafted triazine moiety in B2 introduced active sites and narrowed the band gap. Notably, B3, a Bi4Ti3O12 (donor)-triazine unit (π-electron bridge)-aldehyde benzene (acceptor) molecule, effectively formed the D-π-A array structure, which formed multiple polarization fields and further narrowed the band gap. Therefore, UVI was more likely to capture electrons at the adsorption site of B3 and be reduced to UIV due to energy level matching effects. UVI removal capacity of B3 under simulated sunlight was 684.9 mg g-1, 2.5 times greater than B1 and 1.8 times greater than B2. B3 was still active after multiple reaction cycles, and UVI removal from tailings wastewater reached 90.8%. Overall, B3 provides an alternative design scheme for enhancing photocatalytic performance.

20.
Anal Chim Acta ; 1252: 341056, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-36935154

ABSTRACT

Previous researches of covalent organic frameworks (COFs) have shown their potential as fluorescent probes, but the regulation of their optical properties and recognition characteristics still remains a challenge, and most of reports required complicated post-decoration to improve the sensing performance. In this context, we propose a novel in-situ strategy to construct uracil-conjugated COFs and modulate their fluorescence properties for sensitive and selective mercury(II) detection. By using 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) as fundamental blocks and 5-aminouraci (5-AU) as the functional monomer, a series of COFs (Py-COFs and Py-U-COFs-1 to Py-U-COFs-5) with tunable fluorescence were solvothermally synthesized through an in-situ Schiff base reaction. The π-conjugated framework serves as a signal reporter, the evenly and densely distributed uracil acts as a mercury(II) receptor, and the regular pores (channels) make the rapid and sensitive detection of the mercury(II) possible. In this research, we manage to regulate the crystalline structure, the fluorescence properties, and the sensing performance of COFs by simply changing the molar ratio of precursors. We expect this research to open up a new strategy for effective and controllable construction of functionalized COFs for environmental analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...