Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921011

ABSTRACT

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731861

ABSTRACT

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Subject(s)
Extracellular Traps , Lactoferrin , Neural Cell Adhesion Molecules , Sialic Acids , Lactoferrin/pharmacology , Lactoferrin/metabolism , Humans , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Neural Cell Adhesion Molecules/metabolism , Sialic Acids/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Heparin, Low-Molecular-Weight/pharmacology
3.
ACS Appl Mater Interfaces ; 16(17): 22256-22264, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651607

ABSTRACT

In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.

4.
Food Chem ; 450: 139280, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631209

ABSTRACT

To enhance market demand and fish utilization, cutting processing is essential for fish. Bighead carp were cut into four primary cuts: head, dorsal, belly, and tail, collectively accounting for 77.03% of the fish's total weight. These cuts were refrigerated at 4 °C for 10 days, during which the muscle from each cut was analyzed. Pseudomonas.fragi proliferated most rapidly and was most abundant in eye muscle (EM), while Aeromonas.sobria showed similar growth patterns in tail muscle (TM). Notably, EM exhibited the highest rate of fat oxidation. TM experienced the most rapid protein degradation. Furthermore, to facilitate the cutting applied in mechanical processing, a machine vision-based algorithm was developed. This algorithm utilized color threshold and morphological parameters to segment image background and divide bighead carp region. Consequently, each cut of bighead carp had a different storage quality and the machine vision-based algorithm proved effective for processing bighead carp.


Subject(s)
Algorithms , Carps , Food Storage , Seafood , Carps/growth & development , Animals , Seafood/analysis , Pseudomonas/growth & development , Aeromonas/growth & development
5.
J Med Virol ; 96(1): e29395, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235782

ABSTRACT

People living with HIV (PLWH) are particularly vulnerable to SARS-CoV-2. This multicentre prospective cohort study evaluated the long-term immunogenicity and safety of a third homologous dose of Sinovac CoronaVac in PLWH in China. A total of 228 PLWH and 127 HIV-negative controls were finally included and followed up for 6 months. Fewer participants reported mild or moderate adverse reactions, and no serious adverse events were observed. The median levels of neutralizing antibodies (nAbs) and immunoglobulin G against the receptor-binding domain of the spike protein (S-IgG) in PLWH (655.92 IU/mL, IQR: 175.76-1663.55; 206.83 IU/mL, IQR: 85.20-397.82) were comparable to those in control group (1067.16 IU/mL, IQR: 239.85-1670.83; 261.70 IU/mL, IQR: 77.13-400.75), and reached their peak at 4 weeks, exhibiting a delayed peak pattern compared to the 2-week peak in control group. After then, the immune titres gradually decreased over time, but most participants still maintained positive seroconversion at the 6-month mark. Multivariable generalized estimating equation analysis indicated that CD4+T cell count, HIV viral load, and antiretroviral therapy (ART) were independent factors strongly associated with immune response (each p < 0.05). We suggested that PLWH should maintain well-controlled HIV status through ART and receive timely administration of the second booster dose for optimal protection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Vaccines, Inactivated , Humans , Prospective Studies , China , CD4 Lymphocyte Count , Immunogenicity, Vaccine
6.
Angew Chem Int Ed Engl ; 63(1): e202316039, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37983686

ABSTRACT

A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive "butterfly-like" structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg ), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the "butterfly-like" design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.

7.
Biomaterials ; 304: 122408, 2024 01.
Article in English | MEDLINE | ID: mdl-38041911

ABSTRACT

The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.


Subject(s)
Bioprinting , Tissue Engineering , Animals , Humans , Tissue Engineering/methods , Bioprinting/methods , Drug Discovery , Drug Evaluation, Preclinical , Printing, Three-Dimensional
8.
Gen Psychiatr ; 36(5): e101014, 2023.
Article in English | MEDLINE | ID: mdl-37859749

ABSTRACT

Background: Avoidant paruresis is a common clinical condition in urology and psychosomatic medicine. However, it has limited treatment options that are safe and effective with few side effects. Aims: Our study aimed to investigate the effectiveness and safety of the Chinese herbal Yangxin Tongquan decoction combined with cognitive-behavioural therapy (CBT) for avoidant paruresis. Methods: Sixty-eight patients with avoidant paruresis were divided into a treatment group (33 patients) and a control group (35 patients). The control group was assigned 10 weeks of CBT and systematic desensitisation. In addition to CBT and systematic desensitisation, the treatment group was given the Chinese herbal Yangxin Tongquan decoction during the 10-week study. The Shy Bladder Syndrome Scale (SBS) and the Self-rating Anxiety Scale (SAS) were administered before and after treatment to measure any change. Results: The overall efficacy in the treatment group (n=30) was 80.0% vs 62.5% in the control group (n=33). Comparing pretreatment and post-treatment measures, both groups showed improvement in SBS scores and SAS scores (treatment group: t(SBS) =8.397, p(SBS) <0.001, t(SAS) =8.216, p(SAS)<0.001; control group: t(SBS) =6.802, p(SBS) <0.001, t(SAS)=5.171, p(SAS) <0.001). Moreover, both groups' SBS and SAS scores changed significantly over time (SBS scores: Ftime =118.299, p<0.001; SAS scores: Ftime =92.114, p<0.001). However, the treatment group performed better than the control group (SBS scores: Ftime*group =5.709, p=0.020; SAS scores: Ftime*group =7.235, p=0.009). Conclusions: The Chinese herbal Yangxin Tongquan decoction combined with cognitive-behavioural psychotherapy positively affects the treatment of avoidant paruresis without significant adverse effects.

9.
Front Public Health ; 11: 1227277, 2023.
Article in English | MEDLINE | ID: mdl-37680268

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has significantly affected the global population, with People Living with HIV (PLWH) being particularly vulnerable due to their compromised immune systems. Although vaccination is a crucial preventative measure against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, little is understood about the willingness of PLWH to receive a second COVID-19 booster dose and the factors that may influence this decision. This study investigates the willingness of PLWH in China to receive a second COVID-19 booster dose and its influencing factors, comparing these with a group of healthy individuals. Methods: A multicenter cross-sectional study was conducted across five Chinese cities, namely, Beijing, Tianjin, Zhengzhou, Hohhot, and Harbin. Participants were recruited through five community-based organizations. Data were collected via participant self-administered questionnaires included demographic information, willingness to receive a second COVID-19 booster dose, and knowledge about HIV and COVID-19 vaccination. Factors influencing vaccination willingness were identified using multivariable logistic regression analyzes. Results: A total of 156 PLWH and 151 healthy individuals were included in the study. After adjusting for potential confounders, it was found that PLWH demonstrated a lower willingness to receive a second COVID-19 booster dose compared to healthy individuals (77.6% vs. 88.7%, p = 0.009). Lower willingness was associated with HIV positive status (Adjusted Odds Ratio [AOR]: 0.39, 95%CI: 0.20, 0.75), perceived barriers (AOR: 0.05, 95%CI: 0.01, 0.26), and perceived severity (AOR: 0.32, 95%CI: 0.12, 0.90). Conclusion: PLWH in China demonstrated a lower willingness to receive a second COVID-19 booster dose compared to healthy individuals. The findings suggest that perceptions and understanding of the COVID-19 vaccination and its necessity for protection against SARS-CoV-2 could influence this willingness. Efforts should be made to strengthen and disseminate knowledge about HIV and COVID-19 vaccinations among this population. In addition, developing interventions and policies that target specific subgroups and address misconceptions about vaccination could be instrumental in improving vaccination rates among PLWH.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , COVID-19 Vaccines , China/epidemiology
10.
ACS Appl Mater Interfaces ; 15(37): 44054-44061, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37694683

ABSTRACT

The invention of near-infrared pedant-based double-cable conjugated polymers has demonstrated remarkable efficacy in single-component organic solar cells (SCOSCs). This work focuses on the innovative double-cable conjugated polymers aimed at attaining good absorption and suitable energy levels. Specifically, in the aromatic side units, the electron-donating (D) part is designed using a thieno[3,4-c]pyrrole-4,6-dione (TPD) as a core unit, flanked by two cyclopentadithiophene groups on either side. The electron-deficient (A) terminal groups consist of 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene) malononitrile (NC), which can be further modified through fluorination to modulate the physical properties and packing modes of the acceptor material. The resulting double-cable conjugated polymers exhibit broad absorption spectra spanning 500-850 nm and possess lowered Frontier energy levels when incorporating fluorine elements, providing decreased voltage losses in SCOSCs. Therefore, SCOSCs fabricated using these polymers have demonstrated power conversion efficiencies ranging from 7.6 to 10.2%, in which fluorine-containing double-cable conjugated polymers showed higher PCEs due to more favorable crystalline packing, enhanced exciton dissociation probability, and charge-transporting ability.

11.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615033

ABSTRACT

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Subject(s)
Cell Movement
12.
Front Immunol ; 14: 1129651, 2023.
Article in English | MEDLINE | ID: mdl-36993947

ABSTRACT

Background: People living with HIV (PLWH) are more vulnerable to SARS-CoV-2. However, evidence on the immunogenicity of coronavirus disease 2019 (COVID-19) vaccines in this population is insufficient. The objective of this study is to assess the immunogenicity and safety of the two-dose schedule of Sinovac CoronaVac for 6 months postvaccination in PLWH. Methods: We conducted a multicenter prospective cohort study among PLWH and HIV-negative adults in China. Participants who received two doses of CoronaVac prior to the recruitment were allocated into two groups and followed up for 6 months. The neutralizing antibodies (nAbs), immunoglobulin G against the receptor-binding domain of the spike protein (S-IgG), and gamma-interferon (IFN-γ) were measured to assess the associations among CoronaVac immunogenicity and related factors. Adverse reactions were collected to evaluate the safety profile of vaccination. Results: A total of 203 PLWH and 100 HIV-negative individuals were enrolled. A small portion of participants reported mild or moderate adverse reactions without serious adverse events. Median nAbs level in PLWH (31.96 IU/mL, IQR: 12.34-76.40) was lower than that in the control group (46.52 IU/mL, IQR: 29.08-77.30) at the 2-4 weeks postvaccination (P=0.002), and the same trend was presented for median S-IgG titer (37.09 vs. 60.02 IU/ml) (both P <0.05). The nAbs seroconversion rate in the PLWH group was also lower than in the control group (75.86% vs. 89.00%). After then, the immune responses reduced over time in term of only 23.04% of PLWH and 36.00% of HIV-negative individuals had a positive seroconversion for nAbs at 6-month. The multivariable generalized estimating equation analysis showed that PLWH with CD4+T count≥350 cells/µL presented higher immune response than PLWH with CD4+T count <350 cells/µL in terms of antibody seroconversion and titers. The immunogenicity did not differ in participants with low or high HIV viral load. The S-antigen specific IFN-γ immunity was generally stable and had a slow attenuation in both two groups for 6 months postvaccination. Conclusion: The Sinovac CoronaVac was generally safe and immunogenic in PLWH, but the immunity response was inferior and the antibodies vanished faster compared to HIV-negative individuals. This study suggested a shorter than 6-month interval of prime-boost vaccination for PLWH to ensure a better protection.


Subject(s)
Blood Group Antigens , COVID-19 , HIV Infections , Adult , Humans , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Interferon-gamma , Antibodies, Neutralizing , Immunoglobulin G
13.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36838021

ABSTRACT

Optofluidics seamlessly combines optics and microfluidics together to construct novel devices for microsystems, providing flexible reconfigurability and high compatibility. By taking advantage of mature electronic fabrication techniques and flexible regulation of microfluidics, electrically actuated optofluidics has achieved fantastic optical functions. Generally, the optical function is achieved by electrically modulating the interfaces or movements of microdroplets inside a small chamber. The high refractive index difference (~0.5) at the interfaces between liquid/air or liquid/liquid makes unprecedented optical tunability a reality. They are suitable for optical imaging devices, such as microscope and portable electronic. This paper will review the working principle and recent development of electrical optofluidic devices by electrowetting and dielectrophoresis, including optical lens/microscope, beam steering and in-plane light manipulation. Some methods to improve the lens performance are reviewed. In addition, the applications of electrical microfluidics are also discussed. In order to stimulate the development of electrically controlled liquid lens, two novel designs derived from electrowetting and dielectrophoresis are introduced in this paper.

14.
Adv Mater ; 35(18): e2300629, 2023 May.
Article in English | MEDLINE | ID: mdl-36814317

ABSTRACT

Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.

15.
Angew Chem Int Ed Engl ; 61(35): e202209316, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35785422

ABSTRACT

Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.

16.
ACS Appl Mater Interfaces ; 14(21): 24690-24696, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35603577

ABSTRACT

Progressive advancement in modern detection technologies entails multispectral compatible camouflage. Previously, infrared camouflage materials, such as photonic crystals and metamaterials, have been developed, but improved multispectral compatibility, easy fabrication, and cost-effectiveness remain a challenge. Here, we report a nanostructured composite film based on oxalate-rich porous alumina (OPA) for visible-to-infrared compatible camouflage and simultaneous thermal management. The nanostructured composite film consists of a visible-transparent OPA layer, a composite layer of OPA/metal oxides, and an aluminum substrate. Each functional layer exhibits desirable reflection/emission properties for infrared and visible camouflage. Infrared camouflage is realized by the high reflection (low emission) of the metal substrate in both infrared-detected bands (3-5 and 8-14 µm). Meanwhile, radiative cooling arising from the intrinsic absorption of oxalate in the undetected band (5-8 µm) enhances surface heat dissipation. In addition, background-matching colors can be tuned by the metal oxides in the composite layer for visible camouflage, such as green for forest and brown for desert. This work provides a facile strategy to modulate multispectral absorption/emission properties with much flexibility and thus has great potential for energy conversion and stealth applications.

17.
ACS Appl Mater Interfaces ; 14(5): 7093-7101, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35099921

ABSTRACT

Organic solar cells (OSCs) as the promising green energy technology have drawn much attention in the last two decades. In comparison to polymer solar cells, small-molecule organic solar cells (SMOSCs) have the advantages of precise chemical structure and molecular weight, purification feasibility, batch reproducibility, etc. Despite of the recent advances in molecular design, the efficiencies of SMOSCs are still lagging behind those of polymer-based OSCs. In this work, a new small-molecule donor (SMD) with a fused-ring-connected bridge denoted F-MD has been designed and synthesized. When F-MD was applied into SMOSCs, the F-MD:N3 blends exhibited a power conversion efficiency (PCE) of over 13%, which is much higher than that of the linear π-bridged molecule L-MD based devices (8.12%). Further studies revealed that the fused-ring design promoted the planarity of the molecular conformation and facilitated charge transport in OSCs. More importantly, this strategy also lowered the crystallinity and self-aggregation of the films, and hence optimized the microstructure and phase separation in the corresponding blends. Thereby, the F-MD-based blends have been evidenced to have better exciton dissociation and reduced charge recombination in comparison with the L-MD counterparts, explaining the enhanced PCEs. Our work demonstrates that the fused-ring π-bridge strategy in small-molecule-donor design is an effective pathway to promote the efficiency of SMOSCs as well as enhance the diversity of SMD materials.

18.
Chem Asian J ; 16(24): 4171-4178, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34738329

ABSTRACT

The development of nonfullerene small molecular acceptors (NF-SMAs) has dominated the improvement of efficiencies for organic solar cells and the near-infrared (NIR) absorption is the primary feature of NF-SMAs compared with fullerene derivatives. In this article, a series of acceptor-donor-acceptor-structured NF-SMAs (named CPICs) containing 4H-cyclopenta[1,2-b : 5,4-b']dithiophene (CPDT) electron donor and F-substituted 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC) as electron acceptor were designed and synthesized. With the increase of CPDT units, the elongated conjugations broadened the absorption range of the acceptors and tuned their energy levels sequentially. Therefore, their charge-transporting polarities switched from electron-only type to bipolar mode in organic field-effect transistors. Moreover, these changes also influenced the voltages, current densities, and eventual PCEs of their corresponding cells. When blending with PBDB-T, a champion efficiency of 10.01% was achieved in CPIC-2 based cells. This work demonstrated the importance of absorptions, suitable energy levels and charge transports in improving the efficiencies of organic solar cells.

19.
Acc Chem Res ; 54(9): 2227-2237, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33852280

ABSTRACT

ConspectusConjugated polymers for application in organic solar cells (OSCs) have been developed from poly(phenylenevinylene) to poly(3-hexylthiophene) and then to "donor-acceptor" structures, providing power conversion efficiencies (PCEs) over 18% when blending with the electron acceptor as a two-component photoactive layer. Besides, graft-structural double-cable conjugated polymers that use an electron donor as conjugated backbones and an electron acceptor as pendant side units are one kind of conjugated polymer, in which charge carriers are generated in a single polymer. Therefore, double-cable conjugated polymers can be used as a single photoactive layer in single-component OSCs (SCOSCs). The covalently linked electron donor and acceptor enable double-cable polymers to maintain stable microstructures during long-term operation compared to two-component systems, which is very important for OSCs toward large-area applications. However, SCOSCs based on double-cable conjugated polymers provided PCEs below 3% in a long period, which is lagging far behind PCEs of two-component OSCs. The key reason for this is the limited number of chemical structures and the difficulty to tune the morphology in these polymers.In this Account, we provide an overview about our efforts on developing new double-cable conjugated polymers with rylene diimides as side units, and how to realize high PCEs in SCOSC devices. The studies start from developing a "functionalization-polymerization" method to synthesize the polymers containing rylene diimide acceptors, so that large amounts of double-cable conjugated polymers with distinct physical and electrochemical properties were obtained. Then, we will discuss how to control the nanophase separation in the crystalline region and optimize the miscibility in the amorphous region of double-cable polymers, simultaneously facilitating exciton dissociation and charge transport. With these efforts, a high PCE of 8.4% has been obtained, representing the record PCE in SCOSCs. In addition, the physical process and the stability of SCOSCs will be discussed. We hope that this account will inspire many innovative studies in this field and push the PCEs of SCOSCs to a new stage.

20.
Dalton Trans ; 50(15): 5115-5119, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33881040

ABSTRACT

Al-Doped Fe2O3 (Al-Fe2O3) nanoparticles with a reconstructed electronic structure, oxygen vacancy and modified physical/chemical features are synthesized and used as an advanced anode for Lithium Ion Batteries (LIBs).

SELECTION OF CITATIONS
SEARCH DETAIL
...